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Ahatraet-The axial heat flux in heat pipes is limited in principle for two reasons: (1) insu~cient return flow 
of condensate and (2) vapour flow limitations. If the liquid return flow is guaranteed by a suitable wick 
design, the axial heat flux is ultimately limited only by vapour flow effects. For this ultimate limit of heat 
transfer several vapour flow regimes can be distinguished depending on the relative magnitude of inertia- 
and viscous forces in the vapour. 

An analysis of the ultimate limit of heat transfer of cylindrical heat pipes with laminar vapour flow is 
presented for the two limiting cases of either predominant inertia- or viscous forces (inertia and viscous 
flow regime), taking into consideration both the axial and radial variation of the vapour velocity. The 
radial variation of the axial velocity is decisive in the viscous flow regime, while in the inertia flow regime 
its influence turns out to be limited to a 5 per cent decrease of the ultimate limit of heat transfer. The 
vapour is described as an isothermal perfect gas, This model presents in the pressure ranges of analytical 
interest a fair approximation to reality (error in the heat transfer limits of about 10 per cent) and results 
in an especially simple analysis. In the inertia flow regime the heat flux is limited by the choking phe- 
nomenon (sonic heat transfer limit), while in the viscous flow regime the heat flux limitation stems from 
the fact that the vapour pressure cannot be smaller than zero (viscous heat transfer limit). Approximate 
formulae are derived for these two heat transfer limits. The analysis shows that for every heat pipe below 
a certain temperature the ultimate limit of heat transfer is of the viscous type. This limit can lie much below 

the sonic limit. Good agreement is found between theory and experimental data. 

NOMENCLATURE 

c P’ specific heat of the heat pipe vapour at 
constant pressure; 

4 diameter of the vapour channel; 

9, velocity profile correction; 
h, specific enthalpy of the vapour; 
h f9, specific heat of vaporization of the work- 

ing fluid; 
Z,, I,, l,, length of heat shielded zone, cooling 

zone and heating zone; 
1 eff, effective heat pipe length, defined by 

(13); 
41 axial heat flux density; 
r, radial coordinate; 

% radial component of the vapour velocity; 
a, absolute value of the vapour velocity; 

O,, sonic velocity; 

W, 

X, 

2 
k 
p, 
R, 
I; 
T,, 
T Of' 

A, 

axial component of the vapour velocity; 
defined by (58); 
axial coordinate; 
defined as T/E2 ; 
average molar mass; 
pressure; 
universal gas constant = 1.987 cal/deg; 
temperature; 
boiling temperature; 
transition temperature between viscous 
and sonic heat transfer limitation; 
viscosity of the vapour ; 
defined as 2nu2/d2; 
density of the vapour; 
contribution of the condensate liquid 
to the vapour density ; 
absolute error. 

. Subscripts 
* Dedicated to Prof. Dr. F. Sauter for his 65th birthday. 1, condenser end of the heat pipe; 
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m, maximum value in the heat pipe; 
s, sonic limit; 
4 transition from viscous to sonic heat 

transfer limitation; 

; 
viscous limit; 
evaporator end of the heat pipe; 

1,2, monomer and dimer vapour species. 

Superscripts - 
3 average over the cross section; 

I 
9 liquid vapour interface r = 42; 

I, 
> heat pipe axis I = 0. 

1. INTRODUCTION 

A HEAT pipe (Fig. 1) consists of an evacuated 
container, the interior of which is lined with a 
wick, which is saturated with a working fluid. 
The heat is essentially transferred as latent 
energy by evaporating the working fluid in a 

Vapwr duct Wick with llauld 

i-s- _-.-_-_-.-_ :t I 
~izj-j-GfT~;;$ 

FIG. 1. Principle of the heat pipe and coordinate system. 

heating zone and condensing the vapour in a 
cooling zone; the circulation is completed by 
the return flow of the condensate to the heating 
zone through the wick under the driving action 
of capillary forces [ 11. 

The heat transport in heat pipes is limited by 
a number of effects, which can be divided into 
two groups. This is explained in Fig. 2, which is 
a schematical plot of the heat flux in a heat pipe 
versus the temperature drop between the two 
ends of the heat pipe. When no heat is trans- 
ported, the temperature drop is zero and the 

Vapour flow limit 

Solidification of 
working fluid 

Liquid flow limit 
I, 

c = const. 

Temperature drop , 5 - 7, 

FIG. 2. Heat transfer limitations of a heat pipe (schematic). 

heat pipe has a uniform temperature To. If one 
end of the heat pipe is cooled down to tempera- 
tures T, < T, while the other end is kept at a 
constant temperature T,, the heat flux increases 
very rapidly with T, - T,.* Continuing this 
procedure to ever lower cooling zone tempera- 
tures one arrives at point 1, where the heat flux 
suddenly drops to nearly zero. This drop stems 
from an interruption of the circulation of the 
working fluid due to insufficient return flow of 
liquid, which can be caused by insufficient 
capillary pressure (“wicking limit”) or by the 
formation of bubbles in the wick (“boiling 
limit”). Supposing that these liquid flow limita- 
tions can be overcome by suitable design of the 
wick, the heat flux would further increase with 
decreasing cooling zone temperature, then level 
off in a plateau 2 and finally drop to low values 
(point 3) when the cold end of the heat pipe 
reaches the melting temperature of the working 
fluid and the heat pipe is dried out by solidifica- 
tion of the working fluid at the cold end. 

Plateau 2 is the subject of the following 
analysis. It stems from vapour flow limitations 
and presents an ultimate limit of the heat flux 
in the sense that it cannot be exceeded regardless 

* The initial inclination of the curve, which is propor- 
tional to the effective thermal conductance of the heat pipe, 
can be several orders of magnitude larger than for a copper 
rod of the same size. 
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of wick construction. For these vapour flow 
limitations several regimes can be distinguished 
depending on the relative magnitude of inertia- 
and viscous forces in the vapour. 

In the limiting case of negligible viscous 
forces (“inertia flow regime”), the vapour flow 
is limited by the well known choking pheno- 
menon.* Choking occurs when the vapour 
pressure at the evaporator exit is as low as 
roughly half of the pressure at the upstream end 
of the evaporator. The axial heat flux then can 
no more be increased by a decrease of the pres- 
sure in the condenser (but only by an increase 
of the pressure and hence the temperature in the 
evaporator). In choked inertia how the vapour 
leaves the evaporator with sonic speed. There- 
fore the related heat transfer limit is called the 
(inviscid) “sonic limit”. 

When both inertia and viscous forces play a 
role but the inertia forces predominate, the 
vapour flow is again limited by choking. In this 
case, however, choking occurs at the entrance 
of the condenser rather than at the exit of the 
evaporator. This means that the vapour still 
leaves the evaporator with subsonic speed, is 
expanded in the heat shielded zone to higher 
velocities and finally enters the condenser with 
sonic speed [S]. 

In the other limiting case of negligible inertia 
forces (“viscous flow regime”) choking does not 
occur. The axial heat flux increases steadily with 
decreasing pressure at the evaporator exit and 
is finally limited by the fact that the vapour 
pressure cannot be smaller than zero. We shall 
call this the “viscous limit” of heat transfer. 

In previous analytical work on the sonic 
limit of heat transfer four different vapour models 
have been used. This muitiplicity stems irom the 

* It results from the fact that an increase of the vapour 
velocity w by adiabatic expansion is coupled with a decrease 
of the vapour density p. Thus the increase of the mass flow 
density pw by an increase of w is counteracted by the simul- 
taneous decrease of p. If both effects are equally strong, the 
mass flow out of the evaporator can no more increased by 
a decrease of the pressure beyond the evaporator exit, i.e. 
choking occurs. 

fact that the vapour in the heating zone is formed 
in a nearly saturated condition and is subcooled 
in its expanding flow towards the cooling zone 
E23.t The four models differ in so far as super- 
saturation is concerned. In the first one, the 
“perfect gas model”, the effects of supersatura- 
tion are neglected and the vapour is described 
as a perfect gas [3-6,141. In the second one, the 
“two-phase model”, condensation is assumed to 
occur; the vapour is described as a mixture of 
a perfect gas and a liquid phase in equilibrium 
[4]. However, the formation of a liquid phase 
seems to be unlikely in view of two facts, first 
the lack of nucleation sites in the vapour duct and 
second the low degree of supersaturation [7] ; 
the supersaturation is especially small for alkali 
metal vapours due to their very high heat capa- 
city, which stems from association-dissociation 
reactions in these vapours (monomer s dimer). 
Therefore a third model has been used, the 
“association model”, in which the vapour is 
described as a two-component mixture (mono- 
mer and dimer) of perfect gases, which is in local 
chemical equilibrium but which is “frozen” with 
respect to phase equilibrium, i.e. no condensa- 
tion is assumed to occur [8]. Recently a fourth 
and more refined vapour model has been 
analyzed, in which the kinetics of the association- 
dissociation reaction and the droplet nucleation 
and growth process has been included [15]. 
Formulae for the sonic heat transfer limit have 
been derived only for the perfect gas model 
[3,4,6]. The other models have been evaluated 
by numerical analysis for some specific heat 
pipes [4, 8, 151. It resulted that the sonic limit 
of heat transfer depends only slightly on the 
vapour model [4, 151 but that it can signifi- 
cantly be influenced by viscous effects [S, 151. 
Except for [14], which presents a two dimen- 
sional numerical treatment of the perfect gas 
model, in all these studies on the sonic limit 

.- 
t It should be noted that supersaturation in gcncral 

occurs in the inertia flow regime but not in the viscous flow 
regime where the heat produced by friction tends to keep 
the temperature of the gas constant along a stream line, 
similar as in a Joule-Thomson experiment (see appendix 1). 



the vapour flow has been assumed as one- 
dimensional, that is the variation of the axial 
vapour velocity over the cross section of the 
vapour duct was neglected. So far no work on 
the limiting case of the viscous limit of heat 
transfer is known to have been done. 

This paper gives an analytical treatment of 
vapour flow limitations in heat pipes both for 
limiting cases of inertia and viscous flow regime 
taking into consideration the axial and the 
radial variation of the vapour velocity. For this 
purpose the previously used vapour models are 
substituted by the uniform assumption of an 
isothermal dry vapour. This approach is sug- 
gested by the fact that for all previous vapour 
models the temperature variations as well as 
the liquid mass fraction (provided that condensa- 
tion occurs) are relatively small in that pressure 
range, which is of importance for the evaluation 
of the vapour flow limits (see Appendix 1). The 
advantage of this isothermal dry vapour model 
is the uniformity of the analytical description 
and the simplicity of the analysis. The error in 
the calculated ultimate limits of heat transfer 
is estimated to be of the order of 10 per cent. This 
precision is sufficient for most practical pur- 
poses.* 

with the isothermal approach the temperature 
dependence of the specific heat of vaporization 
j5g is also neglected. Thus the net axial heat flow 
(4 . nd2/4) becomes simply the product of the 
total mass of liquid, which evaporates per time 
unit, and the specific heat of vaporization 11,~. 
In the steady state this mass of evaporated liquid 
is equal to the mass of the vapour which flows 
out of the evaporator 1pM;. lm2/4). Therefore 

a = pn’hru. (3 

The radial variation of P,p and w and the axial 
pressure drop are derived from the Navier- 
Stokes equation of motion of the vapour assum- 
ing laminar vapour ~ow~Using the equation of 
state (1) and assuming that the heat pipe is 
cylindrical, that the heat sources and sinks are 
distributed with axial symmetry around the 
vapour channel and that the heat pipe has a 
length which is large compared with the diameter, 
the Navier-Stokes equation can easily be solved 
by an approximation method similar to that 
of [9]. The three main results of this analysis, 
which is contained in Appendix 2, are the follow- 
ing ones: 

(1) The radial variation of the pressure P is 

2. BASIC EQUATIONS 2.0 

The isothermal dry vapour is described by 
the equation of state of a perfect gas at constant 
tem~rature T,, i.e. 

P P RT, -=-.!l =----. (1) 
P PO M 

The heat supplied to the heating zone is partly 
used for increasing the temperature of the liquid 
flowing in the wick and partly for evaporating 
it. That part of the heat, which is used for the 
temperature increase, is small against the evapo- 
ration part and can be neglected. Consistent 

* A suitable analytical method to obtain higher precisions 
would be to treat the temperature variations and the 
eventual liquid mass fraction as perturbations using the 
isothermal dry vapour model as zero order approximation. 

Radial coordinate, r 

FIG. 3. Profiles of the axial vapour velocity. 

* See introductory remarks of Appendix 3. 
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negligible and therefore also, because of (1) 
the radial variation of p, i.e. 

azJ ap o -_=-_= 
ar dr . 

(2) In the viscous flow regime the profile of 
the axial velocity is of parabolic shape (w N 
1 -4rZ/d2), the same as in Poiseuille flow 
(Fig. 3, curve 1). In the inertia flow regime the 
velocity profile varies along the heat pipe. At 
the beginning of the heat pipe it is of the 
cos(2nr2/d2)-type (Fig. 3, curve 2) known from 
incompressible flow analysis [9]. Along the 
heating zone the velocity profile becomes 
steadily flatter, reaching at the evaporator exit 
in the sonic limit a very flat shape (Fig. 3, 
curve 3). 

(3) For the axial pressure drop the following 
equations hold: in the inertia flow regime 
(equation (48) of Appendix 2) 

B” - P(z) = p(z)w20 ) (44 

in the viscous flow regime (equation (42) of 
Appendix 2) 

dP 32~1 _ -= 
dz - F w(z). W-4 

Equation (4a) is derived in Appendix 2 from the 
Navier-Stokes equation, but it can also be 
written down directly from the momentum 

Pressure ratio , p0 /P(z) 

FIG. 4. Variations of A = w2(z)/Wz(z) with pressure P(z) in 
the inertia flow regime. 

balance. Equation (4b) is the same as for 
Poiseuille flow. The occurrence of 2 in equation 
(4a) necessitates in the following analysis the 
knowledge of the ratio A = 7JiV2. In Appendix 
2 it is shown that A is a weakly variable function 
of the pressure ratio PO/P (equations (55), (57) 
and (58)). This relationship is plotted in Fig. 4. 

From equations (l)-(4) the heat transfer limits 
in the inertia and viscous vapour flow regimes 
can easily be determined. 

3. SONIC HEAT TRANSFER LIMIT 

Combining (l), (2) and (4a) and taking (3) 
into consideration it follows that 

This interesting equation permits to describe 
the pressure distribution along the heat pipe 
and is discussed in some detail in Appendix 3. 
For the moment we notice only that a evidently 
has a maximum for a non-vanishing value of P, 

i.e. that choking of the vapour flow occurs. The 
condition for this maximum, which is the sonic 
limit of heat transfer, is obtained by putting 
da/dP = 0. On finds that 

($s=$[l+(+)~]s. (6) 

Using the relationship between A and PO/P, 

given by (56H58) or Fig. 4, equation (6) can 
readily be solved by iteration, yielding 

0 

p, 

lJ s 
= 2.08 (7) 

and 

As = 1.11. (8) 

With these two values it follows from (5) that 
the average axial heat flux density at the sonic 
limit of heat transfer 

<, = 0.474 h,,(p,P,)+. (9) 

If the axial velocity of the vapour were 
assumed as constant over the cross section, 
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A = q/Z2 would be equal to one. Then, 
according to (6) the maximum of <would occur 
at P,/P = 2 and instead of the factor 0.474 in 
equation (9) a factor 05 would appear. This 
means that the radial variation of the axial 
vapour velocity causes a 5 per cent decrease of 
the sonic limit of heat transfer. 

From (4a) one finds using (7) and (8) that at 
the sonic limit of heat transfer the average axial 
vapour velocity 

Ws = 0*986(P,/p,)+. (lOa) 

Since for a gas with the equation of state (1) 
the velocity of sound us = [dP/dp]&,t,, is equal 
to (P,/p,)*, (lOa) can also be written 

Ws = @986 us. (l@) 

This equation shows that the average axial 
vapour velocity at the sonic limit of heat transfer 
is in fact slightly below the sonic speed. This 
is due to the radial variation of the axial velo- 
city; if namely the axial velocity is assumed to be 
constant over the cross section, i.e. A = 1 and 
P,/P = 2, one finds instead of (lob) that 
Es = 11, 

Together with (lob) it follows from Fig. 3, 
curve 3, in agreement with [ 143 that at the sonic 

limit of heat transfer the vapour stream leaving 
the evaporator has a supersonic core (velocity 
on the axis some 20 per cent above sonic speed). 
This means that the transition to supersonic 
velocities begins already at some distance before 
the evaporator exit (roughly where G reaches 
80 per cent of the sonic limit). 

4. VISCOUS HEAT TRANSFER LIMIT 

Combining (l), (2) and (4b) and taking (3) into 
consideration it follows that 

pdp= 32rlpo; 
dz d2 h,p, ’ 

(11) 

This equation shows that the pressure decreases 
steadily in down stream direction. Integrating 
along the heat pipe one finds that 

1 

p2 _pQ?!!P, 
0 1 

d2 bo s 

;(z)dz. (12) 

0 

Introducing the effective heat pipe length 

l& = + s G(z)dz (13) 
m 

0 

which can be calculated from a knowledge of the 
relative distribution of heat sources and sinks on 
the heat pipe wall,* (12) can be resolved for 
maximum value of the average axial heat flux 
density in the heat pipe 

(14) 

a,,, increases with decreasing pressure at the end 
of the cooling zone and reaches a maximum, 
the viscous limit of heat transfer, when 
P,/P, = Of-. Then 

-7 d2 h, 

” = 64&r pop,* (15) 

I , 

5. DISCUSSION 

The temperature dependence of the viscous 
limit (15) and of the sonic limit (9) of heat 
transfer stems mainly from the factor pop,, 
which increases exponentially with temperature. 
While on the one hand the sonic limit is propor- 
tional to (P,P,)~, the viscous limit increases 
with pop,. Therefore at small values of pop,, 
i.e. of To, the heat flux will be limited by viscous 
effects, while for larger values of pop,, respec- 
tively To, the sonic limitation will dominate. The 
transition from one type of limitation to the 
other occurs in the temperature region where 

* For example, if the heat input and output per surface 
area is constant along the heating and cooling zone, 4 varies 
in these zones linearly with z and therefore I,,, = ilh + 1. + 
i I, 

t For the justification of the isothermal gas approach 
(see Appendix 1) it is important to note that the viscous 
limit is nearly reached already for rather large values of 
Pi/PO. For example, if PJP, = 0.3, c,,, = @92 6. 
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the two heat flux limits (9) and (15) are of about 
the same magnitude. In order to get a criterion 
for the transition temperature T,, one may 
equate the two heat fluxes (9) and (15) thus 
finding that 

@),= 0.033 (5); (16) 

Using for p0 and P, the values of saturated dry 
vapour, the right hand side of this equation can 
be expressed by the temperature T,,. Figure 5 
shows a plot of T,, vs. l,,,,/d’ for Na, K and Cs.* 

600 - 

Viscous heat transfer 

,001 IO lo2 lo” 

( ,,, Id* . cm-’ 

FIG. 5. Transition from viscous to sonic heat transfer 
limitation. 

Thus a general conclusion is that for every 
heat pipe below a certain temperature Tot, which 
depends on the working fluid utilized, the 
geometry of the heat pipe and the relative distri- 
bution of heat sources and sinks on the heat pipe 
wall, the ultimate heat transfer limit is of the 
viscous and not of the sonic type. This viscous 

* For the calculation of Figs. 5 and 6 the n-values of [lo] 
have been used; P, and p0 were calculated from the thermo- 
chemical data of reference [ll] taking into consideration 
both the monomer and dimer vapour component. 
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limit can lie much below the sonic limit, a fact 
which e.g. needs attention in the analysis of heat 
pipe startup. 

In Fig. 6 the theoretical heat transfer limits 
are compared with the experimental results of 
Kemme [5] obtained with Na, K and Cs heat 

IO' 

Temperature at the beginning 
of the heating zone , ToI OC 

FIG. 6. Ultimate heat transfer limits (curves: theory; dots: 
experimental data of Kemme [5]). 

pipes. The data points lie close to the sonic limit 
curves calculated from (9) except for the low 
temperature data of the Na and K heat 
pipes. For Na, where this deviation is most 
evident, the low temperature data lit well on 
the viscous limit curve (15) provided a transition 
temperature T,, = 525°C is assumed. With this 
value for T,,it follows from Fig. 5 that lerf/dZ = 
32/cm and, since the heat pipe diameter was 
1.14 cm, that left = 42 cm. Kemme’s paper does 
not allow a direct calculation of lelf from the 
definition (13). However, the value of 42 cm 
seems to be well compatible with the dimensions 
of his Na heat pipe (1, = 14 cm, 1, = 110 cm, 

1, x 5-10 cm). Thus one may conclude that the 
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deviation of the low temperature Na-data from 
the sonic limit curve indicates the transition 
into the viscous flow regime. 

If it is assumed that the effective length was 
the same for all three heat pipes (they were of 
nearly the same geometry, however the relative 
distribution of heat sources and sinks may have 
been different), one derives from Fig. 5 for the 
K- (d = 1.14 cm) and Cs heat pipe (d = 1.11 cm) 
transition temperatures of respectively 395°C 
and 310°C. Since all Cs data points stem from 
temperatures well above 310°C they sould fit 
on the sonic curve, which in fact is the case. 
Also for the K heat pipe the data points lie 
above the calculated transition temperature of 
395°C but they come relatively close to it. The 
deviation of the two lowest K data points from 
the sonic limit curve therefore could be either 
due to experimental scattering, or it could 
indicate that the transition temperature is in 
fact not 395°C but somewhat higher (about 
430”(Z), which possibility cannot be excluded 
due to the uncertainty about the magnitude ofthe 
effective heat pipe length and the vapour 
viscosity. 

With large temperature drops heat conduction 
along the pipe wall and liquid-wick matrix may 
not be negligible. In the foregoing examples an 
estimations shows that this conductive contri- 
bution should be of the order of only 1 W, which 
in fact is negligible compared with the total 
energy transport. 

APPENDIX 1 

Some thermodynamic considerations to com- 
pressible vapourflow in heat pipes 

The sonic limit of heat transfer depends only 
on the evaporator section of the heat pipe, 
which according to (7) covers the pressure 
range 

P, > P 2 0.5 P,. (17) 

The viscous limit of heat transfer, on the other 
hand, depends on the entire length of the heat 
pipe and, strictly speaking, on the whole pressure 

range P, > P 2 0. However, the pressure range 
of main importance for the analysis is 

P,>PLO.3P, (18) 

(see footnote to equation (15)). For these pressure 
ranges of analytical interest this appendix gives 
an evaluation of the maximum temperature 
variation and of the maximum possible mass 
fraction of condensate liquid in the vapour. 

Let us consider first the liquid-vapour inter- 
face (see Fig. 7). There the vapour is assumed to 

! kick with liquid 

FIG. 7. Terns appearing in the evaluation of temperature 
variations and liquid mass fraction in the vapour. 

be dry (i.e. p, = 0) and saturated. This means 
that the temperature variations can be obtained 
from the given pressure variations (17) and (18) 
by the use of the Claussius-Clapeyron equation. 
For a perfect gas, neglecting the liquid volume, 

dT R dP -=----. 
T2 Mhf, p 

(19) 

This equation holds also if the vapour (as in 
the case of alkali metals) is described as a 
mixture of two reacting perfect gases. Then, 

P = P, + P, (204 

M = (P,M, + P,M,)/P (20b) 

43 = WF be1 + P,M,h/,,)IMP. WC) 
Calculations from thermochemical data show 
that the molar heat of vaporization Mhfg 
depends only little on temperature (less than M 
and h, itself). Therefore (19) may be integrated 
considering Mhfg as constant. Thus one finds 
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for the relative temperature variation along 
the liquid-vapour interface 

To-T’ RT, ( >[ ln: I+$$ 1 
-1 

-=- 

T, Mh,g se 
ln? . 

(21) 
The temperature variations inside the vapour 

as well as the liquid mass fraction can be derived 
from the variation of the specific enthalpy. If 
non-convective heat transfer is neglected, con- 
servation of energy requires that along any 
stream line h + u2/2 is constant. The largest 
variation of the enthalpy occurs along the 

1. No condensation. Then 

p, = 0. (264 
Herewith it follows from (22)-(25) that 

0.7 - M(h, - h’)/RT, 
- 

(26’N 
T” - T’ 
-=2 

: 

McpIR (sonic limit) 

To h, - h’ 

5% 
(viscous limit)(26c) 

2. Malign condensation. Because of the 
two-phase equilibrium the radial constancy of 
P (39b) implies that also T is radially constant, 
i.e. 

center stream line (Fig. 7) where 
T” - T’ = 0. 

h, - h” = +(w’,,‘. (22) 
(27a) 

At the sonic limit, according to Fig. 3 and 
Herewith it follows from (22)(25) that 

equations (10) and (l), 

(w2),’ GY 1.4uf =1 1.4% 

while in the viscous flow regime 

O-7 - M(h, - h’)/RT, 

Mh,JR T, 
(sonic limit) 

(23a) : = 
(2’7b) 

h, _ or’ 
-- 

h 
(viscous limit). 

J-s (274 

W9 

In order to evaluate from (22) the radial tem- 
perature differences and the liquid mass fraction 
in the vapour, the enthalpy difference h, - h” 
is split up in an axial and a radial part (Fig. 7): 

h, - h” = (h, - h’) + (h’ - h”). (24) 

In radial direction P is constant. The radial 
enthalpy difference h - h” therefore depends 
on T and p, only. In linear approximation 

To evaluate equation (26) and (27), the axial 
enthalpy difference h, - h’ at the interface and 
the specific heat c, of the saturated dry vapour 
at constant pressure have to be determined first. 
If the vapour is a perfect gas, the specific 
enthalpy depends on temperature only, i.e. 

h, - h’ = c&T, - T’). (2W 

If furthermore the gas is monatomic, then in 
general 

MC, = ;R. (28W 

If, on the other hand, the vapour is described as 

0 

a two-component mixture (monomer and dimer) 

h’-h”z ah 
E P,P,= JT - T”) - z$ 

( 1 
P: 

of perfect gases in chemical equilibrium, as in 

C P,T’ the case of alkali metals, the specific enthalpy of 

= c,(T’ - T”) + h, $. 

each vapour species is again a function of tem- 
(25) perature only, but the enthalpy of the mixture 

Considering now the two extreme cases of no ,r _ VV, + P2M2h2 
(29) 

condensation and of maximum condensation P,Ml +P2M2 

(i.e. two-phase equilibrium) one finds the follow- depends both on temperature and pressure. 
ing results : Since M, = ZM, and (for the cases considered 
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below) P, 4 Pi, equation (29) can be simplified 
to 

h z h, + 2(h, - h@. (30) 

For dry saturated vapour 

11, - h, = hfsz - hfgl. (31) 

As this quantity depends only slightly on 
temperature, it follows from (30) that the axial 
enthalpy difference of the gas mixture along the 
interface 

h, - h’ x cpl CC, - T’) + 2(hfg, - h/J 

( > 20_ p p2 
P, P’ (324 

For the specific heat of the dry saturated gas 
mixture at constant pressure one finds from (29) 
using van? Hoffs relation for the temperature 

no reactions would occur between the two 
vapour species (“frozen” specific heat). The 
second term contains the contribution of the 
association-dissociation reactions. For P, G P, 
(32b) can be simplified to 

P2 M cp = Cpl + 4- + (‘Ifs1 P, RT 
- hfs2)2. (32~) 

Table 1 shows the result of an evaluation ofthe 
foregoing equations for some alkali metal 
vapours at different temperatures using the 
thermochemical data from [ 111. For compari- 
son also a monatomic perfect gas has been 
included; in this case it was assumed, according 
to the rule of Pictet-Trouton, that Mhfg = 
lORT,. 

At the sonic limit of heat transfer the tempera- 
ture drop -(T’ - T,)/T, along the liquid-vapour 
interface has values up to 6 per cent; values of 
this order of magnitude have in fact been 

Table 1. Temperature variations and liquid massfraction in the pressure ranges ofanalytical interest 

Tl 

(“W 

Inertia flow regime (sonic limit) Viscous flow regime 
P,>P205P, P, B P 2 0.3 P, 

No conden- Two-phase No conden- 
sation equilibrium sation 

$ I y, (T”- T’=O) (P, = 0) 

!!5 Mh,B T’ - TO P” T’ - TO T” _ T 
e 

R RT, 

Perfect gas q 2.5 10 -6 -22 5 -11 11 
(monatomic) 

800 11.4 15.3 -4 -6 5 -1 a0 
Na 1000 11.1 12.2 -5 -7 6 -9 -0 

700 3.4 14.3 -5 -18 4 -8 5 
K 900 4.2 11.0 -6 -14 5 -10 4 

600 4.3 14.4 -5 -14 4 -8 3 
cs 800 5.3 10.6 -6 -12 6 -10 2 

dependence of the equilibrium constant of a observed [16]. In addition to that, if no conden- 
chemical reaction, that sation occurs in the vapour, a radial tempera- 

cp = 
&c,, + 2&c,, + 4R,R,(P, + PJ ture drop towards the axis of the heat pipe 

P, + 2P, (P, + 2PJ3 exists indicating subcooling of the vapour. This 

x(h 

radial temperature drop -(T” - T’)/T, is 22 

- hfsJ2. (32’4 
per cent for the monatomic perfect gas and less 

RT2 IS1 than that for the alkali metal vapours (especially 
The first term on the right hand side of this for Na), due to the dissociation-association 
equation is the specific heat of the mixture if reactions and the resulting high specific heat cp. 
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The maximum temperature variation, if no 
condensation occurs, is the sum of the axial- 
and the radial temperature drop and ranges 
between 28 per cent for the perfect monatomic 
gas and 10 per cent for Na at 800°K. If on the 
other hand, condensation occurs and a 
two-phase equilibrium exists, the mass 
fraction p;/p of condensate liquid in the 
vapour reaches values between 4 and 6 per cent. 
The radial temperature drop then is zero and 
the maximum temperature variation is equal 
to the axial temperature drop -(T’ - T,)/T, 
of 4-6 per cent. 

At the viscous limit of heat transfer the tem- 
perature drop -(rl - T’,)/T, along the liquid- 
vapour interface is somewhat higher than at 
the sonic limit because of the larger pressure 
range of analytical interest. In radial direction 
there is in general a temperature increase to- 
wards the axis of the heat pipe, i.e. the vapour 
is not supersaturated. For the perfect gas this 
increase (Y’ - T’)/T, is as large as the axial 
drop along the interface, i.e. the temperature 
along the centre stream line of the heat pipe 
remains constant.* The physical mechanism 
behind this temperature constancy is the same 
as in a Joule-Thomson experiment: expansion 

in the heat pipe axis is just saturated. (Super- 
saturation by this dissociation effect is princi- 
pally also quite possible.) 

Summarizing one may say that the isothermal 
dry vapour model holds well when a two-phase 
equilibrium exists in the vapour. If there is no 
condensation the model is in the inertia flow 
regime a good approximation when cP is large, 
i.e. when the association-dissociation reactions 
play an important role, while the approximation 
is relatively poor if the vapour behaves as a 
perfect gas. In the viscous flow regime the 
situation is just opposite. 

The effect of the temperature variations and 
of p, on < can easily be estimated. From (2) 
and (4a) it follows that in the inertia flow regime 
for a given pressure essentially G - p+. Similarly 
one obtains from (2) and (4b) that in the viscous 
flow regime G _ p. Therefore at a constant 
pressure the relative errors 01 cl and p are 
related as follows: 

A< 1, LV viscous flow 

y?ZZ P 

4 
L b2 inertia flow. 

P 

energy is transformed by friction into heat, 
which keeps the vapour hot. Table 1 shows that 

The correct equation of state for the vapour is 

for the alkali metal vapours the temperature 
increase (Y’ - T’)/T, towards the axis of the 

MP 
P=P,+j$ 

heat pipe is smaller than the axial drop - (T’ - 
r,)/7’,‘, along the liquid vapour interface, i.e. 
the temperature along the stream lines decreases. 
The reason for this is that with decreasing 
pressure a number of diatomic molecules dis- 
sociates; as this process for alkali metals is 
endothermic, heat is consumed, i.e. the vapour 
is cooled down. For Na this effect is so strong 
that the radial temperature difference in the 
heat pipe becomes roughly zero, i.e. the vapour 

* This holds in fact for every stream line in the perfect 
gas, since in viscous flow according to (22) and (23b) h is 
constant along any stream line; as the enthalpy of a perfect 
gas depends on temperature only, this means that also T 
is constant along each stream line. 

Therefore, for a given pressure, 

Herefrom it follows, taking the values of Table 1, 
that in the isothermal dry gas approximation 
the maximum relative errors of p for any pressure 
in the regions of analytical interest are respec- 
tively 28 per cent in the case of inertia flow and 
11 per cent in the case of viscous flow. The 
resulting relative error A$’ is therefore at 
maximum roughly 14 and 11 per cent, respec- 
tively. 
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APPENDIX 2 similar as in Prandtl’s boundary layer theory 
Analysis of compressible laminar vapour flow [12], to* 
in heat pipes 
1. Basic equations 

Laminar vapour flow is described by the 
Navier-Stokes equation (stationary case, no 
external forces) 

8P 
-= 
ar 

0. (39b) 

grad P = - p (i grad v2 - u x curl u) 

- q (curl curl u - i grad div u) 
2. Hscousflow regime 

(33) In the viscous flow regime the inertia force 
term in (39a) is neglected. Because of (39b) P is 

and the continuity equation a function of z only, i.e. 

div (pa)- pdivu + u.gradp = 0. (34) dP rj a aw -= 
dz 

--r-. (40) 
In cylindrical coordinates for axial symmetry r ar ar 

these equations can be written as follows: Integrating twice over r one finds that 

-q[ikr($f-$)+tLdivu] 

$= -p(u$+w;) 

+ q[g(g -$) +j4$divu] 

ig (rpu) +$pw) = 0 

with 

div u =r--a+ (m) +aF. 

1dP d2 2 
(--r)=qw. 

4dz 4 
(41) 

(35a) 
By averaging over the cross section it follows 
that the axial pressure gradient 

dP 32~ _ -_= --w 
dz d2 ’ (42) 

Herewith one obtains from (41) the profile of 
(35b) the axial velocity (Fig. 3, curve 1) 

The boundary conditions are 

w = u = Oontheendplanesz = Oandz = 1 

3. Inertiaflow regime 

(37) Neglecting the viscous forces in (39a) it 
follows that 

g= -p(u~+w~). (44) 

(3ga) The radial velocity component u can be \ , 

w=o on the liquid-vapour interface r = t. 
eliminated from this equation by means of the 

(3;b) 

continuity equation (36). Integrating (36) over 
r from 0 to r and inserting it into (44) gives 

If the length of each heat pipe zone (i.e. evapora- 
tor, heat shielded zone, condenser) is large 
against the diameter, u is in general small * The validity of this approximation can also be verified 

against w and therefore (35) can be simplified, 
a posteriori by inserting into (35) the velocity profiles 
calculated from (39). 
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r 
a~ aw a --- aZ - ay az s pwd( - pwg (51) 

(45) 
In; = - $(w2)“. 

0 

0 For incompressible flow p = const. the stable 

with solution* of -the 
(39b) under the 

(46) given by 

W 

In order to find an approximate solution of 
the system of equations (45) and (39b) a method 
similar to that of [9] will be used. For this 
purpose the average axial pressure drop and 
the axial pressure drop in the heat pipe axis are 
derived first. 

= ‘5 Z(z) cos t. (52) 

By averaging equation (45) over the cross 
section one finds that on the right hand side the 
first term after partial integration can be com- 
bined with the second term (the integrated part 
vanishes because of the boundary condition 
(38)). It follows that 

As one may expect that for compressible flow 
the profile of the axial velocity at the beginning 
of the heat pipe will be the same as for incom- 
pressible flow, the solution of (45) and (39b) is 
approximated by? 

system of equations (45 and 
boundary conditions (38) is 

w(<, 4 = 5 w [go(z) + s(wl cm 5. (53) 

go can be expressed as a function of g(z) by 
averaging (53) over the cross section. Thus one 
finds that 

dP 
-= 
dz (47) w = 5 C(z) 

[ ( 2 “‘)I 
1 + g(z) 5 + 2 - 7 cos <. (54) 

By integration from z = 0 one finds with the 
boundary condition (38) that 

The rigid solution of the equation (45) and (39b) 
is characterized by the fact that the pressure 

i50-&pw’. (48) P is constant over the cross section. The approxi- 

(This equation can also directly be written 
down from the momentum balance.) Making 
use of the equation of state (1) in order to 
express p by P and taking into account the fact 
that because of (39b) P is radially constant one 
obtains 

p -pApI;z 0 PO ’ 
On the heat pipe axis (5 = 0) the first term 

of the right hand side of (45) vanishes. Eliminat- 
ing p by means of (1) it follows that 

Integrating this equation from z = 0 and taking 
into consideration (39b) it results with the 
boundary condition (38) that 

mation problem consists in determining the 
function g(z) in (54) in such a way that P becomes 
as constant as possible over the cross section. 
The procedure is chosen so as to make the 
average deviation of P from a constant reference 
value equal to zero. As reference value the 
pressure in the axis of the heat pipe is chosen. 
This means that g is determined in such a way 
that P = P”. For this purpose the ansatz (54) 
is inserted into equations (49) and (51), which 

* There are still other solutions, which fulfil the boundary 
conditions (38) (w u cos [(2n + l)r], n = 1, 2,. .). All these 
velocity profiles however are unstable since they have in- 
flexion points (see e.g. [ 121). 

t One might consider to use a linear t-term instead of a 
square term. The velocity profile however turns out to be so 
flat it can be better approximated by a square-term (a 
linear <-term would lead to a pronounced minimum of the 
velocity profile in the axis). 
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are then resolved for g. Calculating at first from 
(54) 2 and (,‘)2 one finds that 

= 1.234 - 0.3589 + 0.206g2 

and 

EV[1 -(;-2)g] 

= 2.468 - 2.307 g + 0.539 92. (56) 

Inserting this now into (49) and (51), eliminating 
w and resolving the resulting quadratic equation 
for g, one obtains 

g = 2.14 
x - 0.310 - (1*145x - 0.669)+ 

. x - 0.765 (57) 

with 

PO -- 
P 

1 

x!E-----. 

ln% 
(58) 

Figure 8 shows a plot of g vs. P,/P calculated 
from equations (57) and (58). At the beginning of 
the evaporator P,/P = 1 and g = 0. This means, 
as expected, that there the velocity profile (49) 
is the same as for incompressible flow ((52) and 

Pressure ratio, PO /P(z) 

FIG. 8. Variation of the velocity profile correction with 
pressure (inertia flow regime). 

curve 2 in Fig. 3). With decreasing P, i.e. along 
the evaporator, g becomes larger and the 
velocity (54) flatter. At the sonic limit (P,/P = 
2.08 (7)) g has a value of 0.47. The corresponding 
velocity profile is shown in Fig. 3, curve 3. The 
velocity profiles are similar to those derived in 

L-141. 
The relation between A E g/i?’ and P,/P, 

which is required for the analysis of the sonic 
limit, is obtained from (55) with (57) and (58). 
Figure 4 is a graphical plot of this relation. The 
decrease of A with P reflects again the increasing 
flatness of the velocity profile. 

APPENDIX 3 

Pressure distribution along a heat pipe in the 
regime of compressible inertiaflow 

This appendix contains a discussion of equa- 
tion (5), which relates the pressure P with the 
average axial heat flux density G : 

If the relation between a and the axial coordin- 
ate z is known, this equation permits to obtain 
the pressure distribution along the heat pipe. 

Before entering into the discussion attention 
has to be drawn to a limitation of equation (5). 
From incompressible vapour flow analysis in 
heat pipes [9] it is known that in the inertia 
flow regime the vapour, which enters the 
cooling zone, is relatively strongly slowed down 
near the wall and relatively little near the axis. 
As a result, at some distance from the condenser 
entrance, the velocity profile gets an inflexion 
point and somewhat later there is a region of 
reverse flow at the wall. This indicates that 
boundary layer separation will occur and that 
the vapour flow can no more be described by 
laminar analysis [12]. One may suspect that a 
similar effect occurs for compressible flow, i.e. 
that in the inertia flow regime only a relatively 
small part of the cooling zone can be described 
by a laminar theory. Thus equation (5) while 
it holds well in the heating zone, will probably 
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FIG. 9. Variation of pressure with average axial heat flux 
density in the inertia flow regime (schematic). 

allow only qualitative conclusions in the cooling 
zone. 

Figure 9 shows a plot of a vs. P from equation 
(5), taking A = 1 (then the sonic limit occurs 
at P = 0.5 PO). Suppose that the heat pipe 
consists only of an evaporator and a condenser 
and that the radial heat input and output current 

(b) 

FIG. 10. Axial variation of average axial heat flux density 
and pressure (schematic). 

densities are constant, i.e. that G varies linearly 
with z (Fig. 10a). Then the increase of a to a 
value a, below the sonic limit of heat transfer 
and its subsequent decrease (curves 1 respec- 
tively 2 in Fig. 10a) correspond to a pressure 
decrease and increase in Fig. 9 as indicated by 
the flashes 1 and 2. The resulting axial pressure 
distribution is shown by the curve l-2 in Fig. 
lob. If the heat flux is increased up to the sonic 
limit (curve 3 in Fig. lOa), the pressure decreases 
as indicated by flash 3 in Fig. 9. For the decrease 
of the heat flux (curve 4 in Fig. lob) there exist 
now two possibilities in the pressure diagram 
of Fig. 9: either an increase (flash 4a) or a 
decrease of pressure (flash 4b). Which path the 
system takes depends on the cooling system. It 
can easily be seen from (49) that the lower 
branch corresponds to supersonic vapour 
velocities. Equation (49) shows furthermore 
that this branch however cannot be followed 
down to P = 0 because of the boundary condi- 
tion (38a), which requires that at the end of the 
cooling zone P = P,. Therefore somewhere a 
compression shock has to occur in which the 
pressure jumps from the lower to the upper 
branch of Fig. 9. The corresponding axial 
pressure distributions are shown as curves 4a 
and 4b in Fig. lob. 

Because of the two-phase equilibrium, the 
temperature Tis logarithmically linked with the 
pressure P (l/T - In (l/P), see equation (19) 
of Appendix 1) and hence the curves of Fig. lob 
give also an idea of the temperature distribution 
along the heat pipe. It is therefore interesting 
to compare Fig. lob with experimental tem- 
perature distributions. 

Figure 11 shows the temperature distributions 
along a heat pipe operated vertically in high 
vacuum. The heat pipe was 500 mm long. The 
lower part of 150 mm length was RF-heated, 
the rest was radiation cooled. The heat pipe was 
made of a smooth Nb-1Zr tube of 10mm o.d. 
and 8 mm Cd. and a NblZr grid-type capillary 
insert [ 131 in the heating zone, which formed 
with the heat pipe wall 60 grooves of 0.1 mm 
width and 0.5 mm depth. The working fluid 
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Axial position, cm 

FIG. 11. Temperature distribution along a radiation cooled 
Nb-lZr/Pb heat pipe of 10 mm o.d. and 500 mm length. 

was Pb. The temperatures were measured 
by optical pyrometry at z = 0,30&l and 130 
mm, from z = 150 mm on at every 25 mm and 
towards the end of the cooling zone at every 
12.5 mm. 

It can be noted that curves 3,4 and 5 in Fig. 
11 have a temperature minimum in the cooling 
zone. This corresponds to the pressure curve 
3-4b in Fig. lob, i.e. left of the temperature 
minimum the flow should be supersonic and 
right of it subsonic; the minimum itself indicates 
the position of the shock front. Figure 11 shows 
that with increasing temperature the shock 
front moves towards the evaporator. Curve 6, 
where the shock front reaches the evaporator 
exit, corresponds then to the pressure curve 
3-4a in Fig. lob. For curves 7 and 8 of Fig. 11 
the flow is everywhere subsonic, corresponding 
to the pressure curve l-2 in Fig. lob. The 
subsonic flow for curves 7 and 8 is also confirmed 
by the fact that from curve 6 to 8 a pronounced 
decrease of the temperature drop in the heating 
zone occurs, as one would expect from com- 
parison of the pressure curves 3 and 1 in Fig. lob. 

Thus equation (5) explains qu~itatively a 
number of the main features of Fig. 11. It does 

not explain the occurrence (or non-occurred) 
of the temperature drops at the heat pipe ends 
shown in Fig. 11, which possibly are due to the 
accumulation of working fluid. 

Quantitatively, however, there are essential 
differences between Fig. lob and Fig. 11. Most 
evident is the fact that in Fig. 11 no complete 
pressure recovery occurs and that the shock 
front is not very sharp. These differences are 
probably mainly due to two effects: First, the 
heat pipe was not operated strictly in the inertia 
flow regime. An est~ation shows that below 
roughly 1200°C the viscous forces may no 
longer be negligible. Second, in the inertia 
flow regime, i.e. above roughly 12OO”C, the 
initially mentioned boundary layer separation 
occurs in the cooling zone so that the vapour 
flow is no longer completely laminar. This is 
also experimentally supported by the fact that 
on curve 4 of Fig. 11 at the position marked by 
a circle rapid temperature fluctuations were 
observed (they were found nowhere else). FinaIly 
it must be noted that the heat conduction in the 
heat pipe wall (Nb-1Zr is a rather good heat 
conductor) will also smooth out the wall 
temperature variation in the region of the shock 
front. 
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THEORIE DE LA LIMITE ULTIME DE TRANSFERT THERMIQUE POUR DES 
CALODUCS CYLINDRIQUES 

RBumGLe flux thermique axial dans des caloducs est en principe limit& pour dew; raisons: I’insufi+ance 
de l’&oulement de retour du condensat et les limitations de 1’8coulement de vapeur. Si I’&coulement 
liquide de retour est garanti par une m&he convenable, le flux thermique axial est limit6 par les seuls 
effets de I’tcoulement de vapeur. Pour cette limite ultime du transfert thermique. on a pu distinguer 
plusiers rtgimes d’icoulement de vapeur dCpendant de la grandeur relative des forces d’inertie et de 
viscositt? dans la vapeur. 

On prbente pour les deux cas limites de la prtdominance soit des forces d’inertie SOIL des forces de 
viscositt (rtgime d’icoulement inertiel ou visqueux), une analyse de la limite ultime du transfert thermique 
dans des caloducs cylindriques en considtrant B la fois les variations axiales et radiales de la vitesse de la 
vapeur. La variation radiale de la composante axiale de la vitesse est dCcisive dans le rtgime d’bcoulement 
visqueux tandis que dans le rkgime d’&oulement inertiel son influence est rtduite B une diminution de 
5 pour cent pour la limite ultime du transfert thermique. La vapeur est d&rite comme un gaz parfait 
isotherme. Ce modble prksente dans les domaines de pression intkressants une approximation convenable 
de la r&alit& (erreur sur les limites du transfert thermique de l’ordre de 10 pour cent) et il repose sur une 
analyse particulitrement simple. Dans le rkgime d’tcoulement inertiel, le flux thermique est limitt par le 
phtnomtne de choc (limite de transfert thermique sonique), tandis que dans le rbgime d’Bcoulement 
visqueux la limitation du flux thermique resulte du fait que la pression de vapeur ne peut &tre infkrieure g 
z&o (limite de transfert thermique visqueux). On obtient des formules approchkes pour ces deux limites de 
transfert thermique. L’analyse montre que pour chaque caloduc, au dessous d’une certaine tempbrature, 
la limite ultime du transfert thermique est du type visqueux. Cette limite peut &tre tr&s infkrieure g la limite 

sonique. Un bon accord ewiste entre les rtsultats thtoriques et expCrimentaux. 

DIE THEORIE DER ENDGULTIGEN W;iRMEOBERTRAGUNGSGRENZE 
ZYLINDRISCHER WjliRMEROHRE 

Zusammenfassung Der axiale Wirmestrom in Wlrmerohren wird im Prinzip aus zwei Ursachen begrenzt : 
unzurclchendcr Riickfluss dcs Kondensats und Dampfstr6mungsbegrenzungen. Falls der Fliissigkeits- 
riickstrom durch eine geeignete Dochtgestaltung garantiert ist, wird der axiale Wgrmestrom nur noch durch 
Dampfstriimungseffekte begrenzt. Fiir diese endgiiltige Grenze der WLrmeiibertragung kann man 
verschiedene Striimungsbereiche unterscheiden, abhiingend von der relativen GrBsse der Trlgheits- und 
ZIhigkeitskrlfte im Dampf. 

Eine Analyse der endgiiltigen Grenze der WBrmeiibertragung zylindrischer WHrmerohre mit laminarer 
Dampfstriimung wird fiir die zwei begrenzenden Fglle, entwederf_jberwiegendTr@heits- oder Z;ihigkeits- 
krlfte (TrBgheits- oder zlher Striimungsbereich) borgclcgt. unter Beriicksichtigung sowobl dcr axialen 
als such der radialen ;inderung der Dampfgeschwindigkeit. Die radiale ijnderung der Axialgeschwindigkeit 
ist entscheidend im viskosen Striimungsbereich, wlhrend sich im Triigheits-Strijmungsbereich ihr Einfluss 
als begrenzt erweist mit einer Verminderung der endgiiltigen Grenze der WLrmeiibertragung urn 5 Prozent. 
Der Dampfwird als isothermes, ideales Gas angesehen. Dieses Model1 gibt in dem analytisch interessierenden 
Druckbereich eine recht gute Nlherung zur Wirklichkeit (Fehler in den Wirmeiibertragungsgrenzen von 
ungelhr 10Prozent) und liefert Ergebnisse durch eine besonders einfache Analyse. Im Trlgheits- 
Strijmungsbereich wird der WLrmestrom durch das Drossel-Phlnomen begrenzt (Schallstramungs- 
WLrmeiibertragungsgrenze), wlhrend im viskosen Strijmungsbereich die WLrmestrombegrenzung daher 
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rtihrt, dass der Dampfdruck nicht kleiner als Null sein kann (viskose Warmetibertragungsgrenze) Die 
Naherungsformelnwurden fiirdiesezweiWarmeiibertragungsgrenzenabgeleitet. Dieuntersuchungzeigt, 

dass fiir jedes WZirmerohr unterhalb einer hestimmten Temperatur die grundlegende Grenze der 
Warmetibertragung vom viskosen Typ ist. Diese Grenze kann weit unterhalb der Schallgrenze liegen. 
Zwischen der Theorie und den experimentellen Ergebnissen wurde eine gute Ubereinstimmung gefunden. 

TEOPHR HPEAEJIA B03M02BHOCTEH TEIIJIOIIEPEHOCA B 
HHJIHHAPIVIECHHX TEHJIOBbIX TPYBHAX 

AiiEOT8~HJI-&fMeIOTCX JIsa npBHnannanbHbIx 0rpaHBneBBn nepeBoca Tenna B OCeBOM 

HanpaBneHaa TennoBbIx ~py60~: HeAOCTaTOnHbIB B03BpaT KOHBeHCaTa II OPpaHB'IeHBFI n0 
nOTOKy napa. Ecnn B03BpaT IKIIBKOCTM ROCTBraeTCR COOTBeTCTByIOmetl KOHCTpyKnMefi 
I#BITnJIn, TO TenJIOnepeHOC B KOHeBHOM C'IeTe OrpaHIVIABaeTCR TOJIbKO BO3RefiCTBKeM nOTOKa 
napa. ll03~0~y npenen B03Mo~KocTeti TennonepeBoca npB pa3HbIx pemBMax TeKeBBa napa 
MO2KeT 6bITb pa3JIBuHbIM B 3aBnCRMOCTB OT OTHOCnTeJIbHOn BeJInnBHbI CBJI IIHepnnII PIJIll 
BRBKOCTK B nOTOKe. 

BbInOnHeH aHanB3 npenena B03MomHocTen nepenasn Tenna B nnnnBApaqecKBx TennoBbIx 
Tpy6Kax npn JIaMnHapHOM Te'IeHBH napa BJIJI RByX npeneJIbHbIX CJIy=IaeB (AHepnnOHHOrO I4 

BJI3KOr0 TeueHng)C yneTOM KaK OCeBOti, TaK II paRIIaJIbHOti COCTaBJIfIIOmnX CKOpOCTK napa. 
l43MeneBBe 0ceBoi CKOPOCTM no pannycy BBnfleTcn 0npenennromaM npa BR~K~M TeqeBKn, 
TOrna KaK npn HHepnHOHHOM TeBeHnB ee BJInRHAe CKa3bIBaeTCn B yMeHbIIIeHBn Ha 5% 
BO3MO)KHOCTen TenJIOnepeHOCa. nap paCCMaTpBBaeTCn KaK A30TepMFIeCKKfi HneaJIbHbIti I'a3. 
~aKanMO~enbnpOCTa~aMeeTXOpOureeCOOTBeTCTB~eCpeanbHblM npOneCCOM AJIBnHTepBaJIa 
AaBJIeHnti,npeBCTaBJInIOmnX TeOpeTBueCKKti IIHTepeC (nOrpeIIIHOCTb npenena BO3MOHcHOCTeti 
COCTaBJIReT OKOJIO 10%). Dpn BHepnBOHOM Te'leHBA TenJIOBOZi nOTOK 0rpaHB'InBaeTCJ-I 
BCJIeACTBne yAapHbIX FiBJIeHIIa (3ByKOBOB npeaen), B TO BpeMn KBK IlpM Bfl3KOM T'IeHAII 

0rpaHBnennn TennoBoro nOTOKa 06yCJIOBneHbI TeM, YTO AaBJIeHKe napa He MOH(eT 6bITb 
MeHbme HyJIFI (BFI3KBti npenen). nOnyueHbI annpOKCBMBpyIOmne 3aBnCnMOCTn Ann 3TBX 

ABYX npeAenbBblx cnysaeB TennooBMeHa. AHanna noKaabIBaeT, n~o Ann Kamgott TennoBoB 
Tpy6~K HIGKe HeKOTOpOn TeMnepaTypbI KOHenHbIti npeAeJI B03MOIKHOCTeti TenJIOO6MeHa 
OnpeAenReTnpeAeJI,KOTOpbIti MO?I-IeT 6bITbHaMHOrO Hn?Ke 3ByKOBOrO.06HapyIKeHOXOpOIIIee 

COOTBeTCTBKe MeIKRy TeopeTnBeCKBMK H 3KCnepnMeHTaJIbHbIMB BaHHbIMn. 


