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Abstract—The axial heat flux in heat pipes is limited in principle for two reasons: (1) insufficient return flow
of condensate and (2) vapour flow limitations. If the liquid return flow is guaranteed by a suitable wick
design, the axial heat flux is ultimately limited only by vapour flow effects. For this ultimate limit of heat
transfer several vapour flow regimes can be distinguished depending on the relative magnitude of inertia-
and viscous forces in the vapour.

An analysis of the ultimate limit of heat transfer of cylindrical heat pipes with laminar vapour flow is
presented for the two limiting cases of either predominant inertia- or viscous forces (inertia and viscous
flow regime), taking into consideration both the axial and radial variation of the vapour velocity. The
radial variation of the axial velocity is decisive in the viscous flow regime, while in the inertia flow regime
its influence turns out to be limited to a 5 per cent decrease of the ultimate limit of heat transfer. The
vapour is described as an isothermal perfect gas. This model presents in the pressure ranges of analytical
interest a fair approximation to reality (error in the heat transfer limits of about 10 per cent) and results
in an especially simple analysis. In the inertia flow regime the heat flux is limited by the choking phe-
nomenon (sonic heat transfer limit), while in the viscous flow regime the heat flux limitation stems from
the fact that the vapour pressure cannot be smaller than zero (viscous heat transfer limit). Approximate
formulae are derived for these two heat transfer limits. The analysis shows that for every heat pipe below
a certain temperature the ultimate limit of heat transfer is of the viscous type. This limit can lie much below

the sonic limit. Good agreement is found between theory and experimental data.

NOMENCLATURE w, axial component of the vapour velocity;
c,, specific heat of the heat pipe vapour at % defined by (58);
d,  diameter of the vapour channel; 4,  defined as w¥/w?;
g,  velocity profile correction; M, average molar mass;
h,  specific enthalpy of the vapour; P, pressure;
h,, specific heat of vaporization of the work- R,  universal gas constant = 1987 cal/deg;
ing fluid; T,  temperature;
1,1, 1, length of heat shielded zone, cooling ~ 7 boiling temperature;
zone and heating zone; T,, transition temperature between viscous
le effective heat pipe length, defined by apd so'nic heat transfer limitation;
(13); #,  viscosity of the vapour;
g,  axial heat flux density; 4 deﬁngd as 2nr?/d?;
r,  radial coordinate; p,  density of the vapour;
u,  radial component ofthe vapour velocity; ~ P ~ contribution of the condensate liquid
v,  absolute value of the vapour velocity; to the vapour density;
v, sonic velocity; A,  absoluteerror.
; Subscripts
* Dedicated to Prof. Dr. F. Sauter for his 65th birthday. L condenser end of the heat pipe;
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m, maximum valuein the heat pipe;

s, sonic limit ;

t, transition from viscous to sonic heat
transfer limitation;

v,  viscous limit;

0, evaporator end of the heat pipe;

1,2, monomer and dimer vapour species.

Superscripts

",  average over the cross section;

, liquid vapour interface r = d/2;
", heat pipeaxisr = 0.

’

1. INTRODUCTION
A HEAT pipe (Fig. 1) consists of an evacuated
container, the interior of which is lined with a
wick, which is saturated with a working fluid.
The heat is essentially transferred as latent
energy by evaporating the working fluid in a
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FiG. 1. Principle of the heat pipe and coordinate system.

heating zone and condensing the vapour in a
cooling zone; the circulation is completed by
the return flow of the condensate to the heating
zone through the wick under the driving action
of capillary forces [1].

The heat transport in heat pipes is limited by
a number of effects, which can be divided into
two groups. This is explained in Fig. 2, which is
a schematical plot of the heat flux in a heat pipe
versus the temperature drop between the two
ends of the heat pipe. When no heat is trans-
ported, the temperature drop is zero and the

C. A. BUSSE

Vapour flow limit
2 3

Q,

s'qv

Solidification of
working fluid

. g

Liquid flow limit

1 7, =const.

Average axial heat
density

flux

© 7o

Temperature drop, 7, — 7,

Fi1G. 2. Heat transfer limitations of a heat pipe (schematic).

heat pipe has a uniform temperature T,. If one
end of the heat pipe is cooled down to tempera-
tures T, < T, while the other end is kept at a
constant temperature T, the heat flux increases
very rapidly with T, — T.* Continuing this
procedure to ever lower cooling zone tempera-
tures one arrives at point 1, where the heat flux
suddenly drops to nearly zero. This drop stems
from an interruption of the circulation of the
working fluid due to insufficient return flow of
liquid, which can be caused by insufficient
capillary pressure (“wicking limit”) or by the
formation of bubbles in the wick (“boiling
limit”). Supposing that these liquid flow limita-
tions can be overcome by suitable design of the
wick, the heat flux would further increase with
decreasing cooling zone temperature, then level
off in a plateau 2 and finally drop to low values
(point 3) when the cold end of the heat pipe
reaches the melting temperature of the working
fluid and the heat pipe is dried out by solidifica-
tion of the working fluid at the cold end.
Plateau 2 is the subject of the following
analysis. It stems from vapour flow limitations
and presents an ultimate limit of the heat flux
in the sense that it cannot be exceeded regardless

* The initial inclination of the curve, which is propor-
tional to the effective thermal conductance of the heat pipe,
can be several orders of magnitude larger than for a copper
rod of the same size.
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of wick construction. For these vapour flow
limitations several regimes can be distinguished
depending on the relative magnitude of inertia—
and viscous forces in the vapour.

In the limiting case of negligible viscous
forces (“inertia flow regime”), the vapour flow
is limited by the well known choking pheno-
menon.* Choking occurs when the vapour
pressure at the evaporator exit is as low as
roughly half of the pressure at the upstream end
of the evaporator. The axial heat flux then can
no more be increased by a decrease of the pres-
sure in the condenser (but only by an increase
of the pressure and hence the temperature in the
evaporator). In choked inertia flow the vapour
leaves the evaporator with sonic speed. There-
fore the related heat transfer limit is called the
(inviscid) “sonic limit”.

When both inertia and viscous forces play a
role but the inertia forces predominate, the
vapour flow is again limited by choking. In this
case, however, choking occurs at the entrance
of the condenser rather than at the exit of the
evaporator. This means that the vapour still
leaves the evaporator with subsonic speed, is
expanded in the heat shielded zone to higher
velocities and finally enters the condensor with
sonic speed [8].

In the other limiting case of negligible inertia
forces (“viscous flow regime”) choking does not
occur. The axial heat flux increases steadily with
decreasing pressure at the evaporator exit and
is finally limited by the fact that the vapour
pressure cannot be smaller than zero. We shall
call this the “viscous limit” of heat transfer.

In previous analytical work on the sonic
limit of heat transfer four different vapour models
have been used. This multiplicity stems [rom the

* It results from the fact that an increase of the vapour
velocity w by adiabatic expansion is coupled with a decrease
of the vapour density p. Thus the increase of the mass flow
density pw by an increase of w is counteracted by the simul-
taneous decrease of p. If both effects are equally strong, the
mass flow out of the evaporator can no more increased by
a decrease of the pressure beyond the evaporator exit, ie.
choking occurs.
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fact that the vapour in the heating zone is formed
in a nearly saturated condition and is subcooled
in its expanding flow towards the cooling zone
{2]-1 The four models differ in so far as super-
saturation is concerned. In the first one, the
“perfect gas model”, the effects of supersatura-
tion are neglected and the vapour is described
as a perfect gas [3-6, 14]. In the second one, the
“two-phase model”, condensation is assumed to
occur; the vapour is described as a mixture of
a perfect gas and a liquid phase in equilibrium
[4]. However, the formation of a liquid phase
seems to be unlikely in view of two facts, first
the lack of nucleation sites in the vapour duct and
second the low degree of supersaturation [7];
the supersaturation is especially small for alkali
metal vapours due to their very high heat capa-
city, which stems from association—dissociation
reactions in these vapours (monomer < dimer).
Therefore a third model has been used, the
“association model”, in which the vapour is
described as a two-component mixture (mono-
mer and dimer) of perfect gases, which is in local
chemical equilibrium but which is “frozen” with
respect to phase equilibrium, i.e. no condensa-
tion is assumed to occur [8]. Recently a fourth
and more refined vapour model has been
analyzed, in which the kinetics of the association~
dissociation reaction and the droplet nucleation
and growth process has been included [15].
Formulae for the sonic heat transfer limit have
been derived only for the perfect gas model
[3, 4, 6]. The other models have been evaluated
by numerical analysis for some specific heat
pipes [4, 8, 15]. It resulted that the sonic limit
of heat transfer depends only slightly on the
vapour model [4, 15] but that it can signifi-
cantly be influenced by viscous effects [8, 15].
Except for [14], which presents a two dimen-
sional numerical treatment of the perfect gas
model, in all these studies on the sonic limit

t It should be noted that supersaturation in general
occurs in the inertia flow regime but not in the viscous flow
regime where the heat produced by friction tends to keep
the temperature of the gas constant along a stream line,
similar as in a Joule-Thomson experiment (see appendix 1),
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the vapour flow has been assumed as one-
dimensional, that is the variation of the axial
vapour velocity over the cross section of the
vapour duct was neglected. So far no work on
the limiting case of the viscous limit of heat
transfer is known to have been done.

This paper gives an analytical treatment of
vapour flow limitations in heat pipes both for
limiting cases of inertia and viscous flow regime
taking into consideration the axial and the
radial variation of the vapour velocity. For this
purpose the previously used vapour models are
substituted by the uniform assumption of an
isothermal dry vapour. This approach is sug-
gested by the fact that for all previous vapour
models the temperature variations as well as
the liquid mass fraction (provided that condensa-
tion occurs) are relatively small in that pressure
range, which is of importance for the evaluation
of the vapour flow limits (see Appendix 1}. The
advantage of this isothermal dry vapour model
is the uniformity of the analytical description
and the simplicity of the analysis. The error in
the calculated ultimate limits of heat transfer
is estimated to be of the order of 10 per cent. This
precision is sufficient for most practical pur-
poses.*

2. BASIC EQUATIONS
The isothermal dry vapour is described by
the equation of state of a perfect gas at constant
temperature T, i.e.

(1

The heat supplied to the heating zone is partly
used for increasing the temperature of the liquid
flowing in the wick and partly for evaporating
it. That part of the heat, which is used for the
temperature increase, is small against the evapo-
ration part and can be neglected. Consistent

* A suitable analytical method to obtain higher precisions
would be to treat the temperature variations and the
eventual liquid mass fraction as perturbations using the
isothermal dry vapour model as zero order approximation.
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with the isothermal approach the temperature
dependence of the specific heat of vaporization
h , is also neglected. Thus the net axial heat flow
(g .md*/4) becomes simply the product of the
total mass of liquid, which evaporates per time
unit, and the specific heat of vaporization h o
In the steady state this mass of evaporated liquid
is equal to the mass of the vapour which flows
out of the evaporator (pw . nd*/4). Therefore

The radial variation of P,p and w and the axial
pressure drop are derived from the Navier—
Stokes equation of motion of the vapour assum-
ing laminar vapour flow* Using the equation of
state (1) and assuming that the heat pipe is
cylindrical, that the heat sources and sinks are
distributed with axial symmetry around the
vapour channel and that the heat pipe has a
length which is large compared with the diameter,
the Navier—Stokes equation can easily be solved
by an approximation method similar to that
of [9]. The three main results of this analysis,
which is contained in Appendix 2, are the follow-
ing ones:

{1} The radial variation of the pressure P is
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Fi1G. 3. Profiles of the axial vapour velocity.

* See introductory remarks of Appendix 3.
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negligible and therefore also, because of (1),
the radial variation of p, i.e.

P _op _

o o )

(2) In the viscous flow regime the profile of
the axial velocity is of parabolic shape (w ~
1—4r?/d*), the same as in Poiseuille flow
(Fig. 3, curve 1). In the inertia flow regime the
velocity profile varies along the heat pipe. At
the beginning of the heat pipe it is of the
cos(2nr?/d?)-type (Fig. 3, curve 2) known from
incompressible flow analysis [9]. Along the
heating zone the velocity profile becomes
steadily flatter, reaching at the evaporator exit
in the sonic limit a very flat shape (Fig. 3,
curve 3).

(3) For the axial pressure drop the following
equations hold: in the inertia flow regime
{equation (48) of Appendix 2)

P, — P(z) = p(ow’(a), (4a)

in the viscous flow regime (equation (42) of
Appendix 2)
dp

- 2—7 w(z).

dz = & (4b)

Equation (4a) is derived in Appendix 2 from the
Navier-Stokes equation, but it can also be
written down directly from the momentum
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FiG. 4. Variations of 4 = ﬁ(z)/wz(z) with pressure P(z) in
the inertia flow regime.
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balance. Equation (4b) is the same as for
Poiseuille flow. The occurrence of w? in equation
(4a) necessitates in the following analysis the
knowledge of the ratio 4 = w?/w>. In Appendix
2 it is shown that A is a weakly variable function
of the pressure ratio P,/P (equations (55), (57)
and (58)). This relationship is plotted in Fig. 4.

From equations (1}-(4) the heat transfer limits
in the inertia and viscous vapour flow regimes
can easily be determined.

3. SONIC HEAT TRANSFER LIMIT
Combining (1), (2) and (4a) and taking (3)
into consideration it follows that

-2 2]
A P P

0 0

)

This interesting equation permits to describe
the pressure distribution along the heat pipe
and is discussed in some detail in Appendix 3.
For the moment we notice only that g evidently
has a maximum for a non-vanishing value of P,
i.e. that choking of the vapour flow occurs. The
condition for this maximum, which is the sonic
limit of heat transfer, is obtained by putting
dg/dP = 0. On finds that

P> 1|: (Po ) dinA :|

—) =31+ 2-1)—].
<P0 s 2 P d(Po/P) H
Using the relationship between 4 and P /P,

given by (56)-(58) or Fig. 4, equation (6) can
readily be solved by iteration, yielding

PO
(7)s = 208

.= I1L.

(6)

™

and
(8)

With these two values it follows from (5) that
the average axial heat flux density at the sonic
limit of heat transfer

g, = 0:474h,(p Pt

©)

If the axial velocity of the vapour were
assumed as constant over the cross section,
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A = w?/w?* would be equal to one. Then,
according to (6), the maximum of § would occur
at Po/P = 2 and instead of the factor 0-474 in
equation (9) a factor 0-5 would appear. This
means that the radial variation of the axial
vapour velocity causes a 5 per cent decrease of
the sonic limit of heat transfer.

From (4a) one finds using (7) and (8) that at
the sonic limit of heat transfer the average axial
vapour velocity

, = 0:986(P,/p,)*. (10a)

Since for a gas with the equation of state (1)

the velocity of sound v, = [0P/dp]?}, . is equal
to (P,/p,)*, (10a) can also be written
%, = 09860, (10b)

This equation shows that the average axial
vapour velocity at the sonic limit of heat transfer
is in fact slightly below the sonic speed. This
is due to the radial variation of the axial velo-
city; if namely the axial velocity is assumed to be
constant over the cross section, i.e. A =1 and
P,/P =2, one finds instead of (10b) that
W, =0,

Together with (10b) it follows from Fig. 3,
curve 3, in agreement with [ 14] that at the sonic
limit of heat transfer the vapour stream leaving
the evaporator has a supersonic core (velocity
on the axis some 20 per cent above sonic speed).
This means that the transition to supersonic
velocities begins already at some distance before
the evaporator exit (roughly where ¢ reaches
80 per cent of the sonic limit).

4. VISCOUS HEAT TRANSFER LIMIT

Combining (1), (2) and (4b) and taking (3) into
consideration it follows that

(1

This equation shows that the pressure decreases
steadily in down stream direction. Integrating
along the heat pipe one finds that
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!
6dn P, (=

p2 _p?—-_~"_"0 1(z)dz. 12

0 i 42 hngo f‘l(z) z (12)

0

Introducing the effective heat pipe length

i

-
Lige :E— g(z)dz (13)

0

which can be calculated from a knowledge of the
relative distribution of heat sources and sinks on
the heat pipe wallL* (12) can be resolved for
maximum value of the average axial heat flux
density in the heat pipe

7 - d’h,, ( .

" 64nl

eff

P2
- P—'z>popo. (14)
0

q,, increases with decreasing pressure at the end
of the cooling zone and reaches a maximum,

the viscous limit of heat transfer, when
P,/P, = 0t.Then
- d*h .
] = P 15
qv 647’leff p() 0 ( )

5. DISCUSSION

The temperature dependence of the viscous
limit (15) and of the sonic limit (9) of heat
transfer stems mainly from the factor p,P,,
which increases exponentially with temperature.
While on the one hand the sonic limit is propor-
tional to (p,P,)%, the viscous limit increases
with p,P,. Therefore at small values of p P,
ie. of T, the heat flux will be limited by viscous
effects, while for larger values of p P, respec-
tively T;,, the sonic limitation will dominate. The
transition from one type of limitation to the
other occurs in the temperature region where

* For example, if the heat input and output per surface
area is constant along the heating and cooling zone, § varies
iln these zones linearly with z and therefore [, = 14, + [, +
3l

T For the justification of the isothermal gas approach
(see Appendix 1) it is important to note that the viscous
limit is nearly reached already for rather large values of
P/Py. Forexample, if P/P, = 03,4, = 0924,
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the two heat flux limits (9) and (15) are of about
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limit can lie much below the sonic limit, a fact

the same magnitude. In order to get a criterion which e.g. needs attention in the analysis of heat

for the transition temperature T, one may
equate the two heat fluxes (9) and (15), thus
finding that

far) _ 0,033 (Lo
&), no)

Using for p, and P the values of saturated dry
vapour, the right hand side of this equation can
be expressed by the temperature T,,,. Figure 5
shows a plot of Ty, vs. l¢/d? for Na, K and Cs.*

(16)
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Fic. 5. Transition from viscous to sonic heat transfer
limitation.

Thus a general conclusion is that for every
heat pipe below a certain temperature T;,, which
depends on the working fluid utilized, the
geometry of the heat pipe and the relative distri-
bution of heat sources and sinks on the heat pipe
wall, the ultimate heat transfer limit is of the

viscous and not of the sonic type. This viscous

* For the calculation of Figs. 5 and 6 the y-values of [10]
have been used; P, and p, were calculated from the thermo-
chemical data of reference [11] taking into consideration
both the monomer and dimer vapour component.

pipe startup.
In Fig. 6 the theoretical heat transfer limits

are compared with the experimental results of

Kemme [5] obtained with Na, K and Cs heat

1

1 Jlll

llli

L

Ultimate Hmit of the average
axial heat flux density , ¢, W/cm

Temperature at the beginning
of the heating zone, 7,, °C

F1G. 6. Ultimate heat transfer limits (curves: theory; dots:
experimental data of Kemme [5]).

pipes. The data points lie close to the sonic limit
curves calculated from (9) except for the low
temperature data of the Na and K heat
pipes. For Na, where this deviation is most
evident, the low temperature data fit well on
the viscous limit curve (15) provided a transition
temperature T, = 525°C is assumed. With this
value for T, it follows from Fig. 5 that [ ;./d* =
32/cm and, since the heat pipe diameter was
1:14 ¢cm, that [ ;, = 42 cm. Kemme’s paper does
not allow a direct calculation of [, from the
definition (13). However, the value of 42 cm
seems to be well compatible with the dimensions
of his Na heat pipe (I, = 14 cm, | = 110 cm,
I, = 5-10 cm). Thus one may conclude that the
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deviation of the low temperature Na-data from
the sonic limit curve indicates the transition
into the viscous flow regime.

If it is assumed that the effective length was
the same for all three heat pipes (they were of
nearly the same geometry, however the relative
distribution of heat sources and sinks may have
been different), one derives from Fig. 5 for the
K- (d = 1-14 cm) and Cs heat pipe (d = 1-11 cm)
transition temperatures of respectively 395°C
and 310°C. Since all Cs data points stem from
temperatures well above 310°C they sould fit
on the sonic curve, which in fact is the case.
Also for the K heat pipe the data points lie
above the calculated transition temperature of
395°C, but they come relatively close to it. The
deviation of the two lowest K data points from
the sonic limit curve therefore could be either
due to experimental scattering, or it could
indicate that the transition temperature is in
fact not 395°C but somewhat higher (about
430°C), which possibility cannot be excluded
due to the uncertainty about the magnitude of the
effective heat pipe length and the vapour
viscosity.

With large temperature drops heat conduction
along the pipe wall and liquid-wick matrix may
not be negligible. In the foregoing examples an
estimations shows that this conductive contri-
bution should be of the order of only 1 W, which
in fact is negligible compared with the total
energy transport.

APPENDIX 1
Some thermodynamic considerations to com-
pressible vapour flow in heat pipes
The sonic limit of heat transfer depends only
on the evaporator section of the heat pipe,
which according to (7) covers the pressure
range
P, 2Pz 05P, 17
The viscous limit of heat transfer, on the other
hand, depends on the entire length of the heat
pipe and, strictly speaking, on the whole pressure
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range P, > P > 0. However, the pressure range
of main importance for the analysis is

P,> P2 03P, (18)

(see footnote to equation (15)). For these pressure
ranges of analytical interest this appendix gives
an evaluation of the maximum temperature
variation and of the maximum possible mass
fraction of condensate liquid in the vapour.

Let us consider first the liquid—vapour inter-
face (see Fig. 7). There the vapour is assumed to

Vapour

Liquid-vapour interface
(P.*0)

L6l i

‘ Wick with liquid
,

F1G. 7. Terms appearing in the evaluation of temperature
variations and liquid mass fraction in the vapour.

be dry (i.e. p, = 0) and saturated. This means
that the temperature variations can be obtained
from the given pressure variations (17) and (18)
by the use of the Claussius—Clapeyron equation.
For a perfect gas, neglecting the liquid volume,

dT R dpP

= — (19)
T2 ~ Mh,, P

This equation holds also if the vapour (as in
the case of alkali metals) is described as a
mixture of two reacting perfect gases. Then,

P=P, +P, (20a)
M = (P,M, + P,M,)/P (20b)
hg= (P\M,h,, + P,Mh,,)/MP. (20¢)

Calculations from thermochemical data show
that the molar heat of vaporization Mh

depends only little on temperature (less than M
and h [, itself). Therefore (19) may be integrated
considering Mh, as constant. Thus one finds
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for the relative temperature variation along
the liquid—vapour interface

’ -1
L-T _ R (mf-‘?-)[l +~§To—ln&] :
T, Mh, P Mh, P
21
The temperature variations inside the vapour
as well as the liquid mass fraction can be derived
from the variation of the specific enthalpy. If
non-convective heat transfer is neglected, con-
servation of energy requires that along any
stream line h + v%/2 is constant. The largest

variation of the enthalpy occurs along the
center stream line (Fig. 7) where

hy — K = Yw?y. 22)

At the sonic limit, according to Fig. 3 and
equations (10) and (1),

W)’ ~ 1407 = 1-4%15 {23a)
while in the vistous flow regime
RT,

2y g v? = =2, 23b

W' <o} = — (23b)

In order to evaluate from (22) the radial tem-
perature differences and the liquid mass fraction
in the vapour, the enthalpy difference h, — h”
is split up in an axial and a radial part (Fig. 7):

ho — hll —_ (ho I hl) + (hr — hl!). (24)

In radial direction P is constant. The radial
enthalpy difference &' — h" therefore depends
on T and p, only. In linear approximation

.- " ah ! " ah 4
W—h = (ﬁ")"mﬁ"(’r -T- (5PC>P‘T')OC

p—:‘/
P

Considering now the two extreme cases of no
condensation and of maximum condensation

(i.e. two-phase equilibrium) one finds the follow-
ing results:

= (T = T") + hy, (25)
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1. No condensation. Then

p.=0. (26a)

Herewith it follows from (22)25) that
_ 07— M(h, — K)/RT,

T ~T _ Mcp/R  (sonic limit)
T, hy — I
cpTy

(26b)

(viscous limit)(26c)

2. Maximum condensation. Because of the
two-phase equilibrium the radial constancy of
P (39b) implies that also T is radially constant,
ie.

T —T =0. (27a)
Herewith it follows from (22)25) that
07 = M(hy — K)/RT, (sonic limit)
P _ Mh, /RT, (2
p - ﬁ%z:—h— (viscous limit).
i) (27¢)

To evaluate equation (26) and (27), the axial
enthalpy difference h, — i’ at the interface and
the specific heat ¢, of the saturated dry vapour
at constant pressure have to be determined first.
If the vapour is a perfect gas, the specific
enthalpy depends on temperature only, i.e.

hy — B = c(T, — T (282)

If furthermore the gas is monatomic, then in
general

Mc, = iR. (28b)

If, on the other hand, the vapour is described as
a two-component mixture (monomer and dimer)
of perfect gases in chemical equilibrium, as in
the case of alkali metals, the specific enthalpy of
each vapour species is again a function of tem-
perature only, but the enthalpy of the mixture

_ P\Mh, + P M,h,

h
PxM: + P,M,

(29)

depends both on temperature and pressure.
Since M, = 2M and (for the cases considered
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below) P, < P, equation (29) can be simplified
to

P
hxh +2h,— hl)Fz. (30)
For dry saturated vapour
—hy, = h,, - (31)

As this quantity depends only slightly on
temperature, it follows from (30) that the axial
enthalpy difference of the gas mixture along the
interface

hy —H ~c, (To—

T') + 2k, , — hy,,)
P

P
(732:0 — —2> (32a)

P
For the specific heat of the dry saturated gas
mixture at constant pressure one finds from (29),
using van’t Hoff’s relation for the temperature

BUSSE

no reactions would occur between the two
vapour species (“frozen” specific heat). The
second term contains the contribution of the

association-dissociation reactions. For P, € P,
(32b) can be simplified to
P, M,

c,=¢, + 4P RTZ(I“” - fgz)l (32¢)

Table 1 shows the result of an evaluation of the
foregoing equations for some alkali metal
vapours at different temperatures using the
thermochemical data from [11]. For compari-
son also a monatomic perfect gas has been
included; in this case it was assumed, according
to the rule of Pictet-Trouton, that Mh o
10RT,.

At the sonic limit of heat transfer the tempera-
ture drop (T’ — Tp)/ T, along the liquid-vapour
interface has values up to 6 per cent; values of
this order of magnitude have in fact been

Table 1. Temperature variations and liquid mass fraction in the pressure ranges of analytical interest

Viscous flow regime
P, 2Pz 03P,

Inertia flow regime (sonic limit)
P,2P205P,

Noconden- Two-phase No conden-
sation equilibrium sation
) b, =0 (T"-T'=0) p,=0)
I Mc, Mh, T -T, T =T oY T-T, T -T
R RT, T T, P TQ T
(°K) (%) (%) (%) (%) (%)
Perfect gas T, 25 10 -6 -22 5 -1 1
(monatomic)
800 114 153 -4 -6 5 -7 ~0
Na 1000 111 122 -5 -7 6 -9 ~0
700 34 143 -5 —18 4 -8 5
K 900 42 110 -6 ~14 5 ~10 4
600 43 144 -5 —14 4 -8 3
Cs 800 53 106 -6 -12 6 ~10 2

dependence of the equilibrium constant of a
chemical reaction, that

o _ P + 2Py, APPYP, + P))
»= P, +2P, (P, + 2P,)
M
gz gy = by (32b)

The first term on the right hand side of this
equation is the specific heat of the mixture if

observed [16]. In addition to that, if no conden-
sation occurs in the vapour, a radial tempera-
ture drop towards the axis of the heat pipe
exists indicating subcooling of the vapour. This
radial temperature drop —(T" — T')/T, is 22
per cent for the monatomic perfect gas and less
than that for the alkali metal vapours (especially
for Na), due to the dissociation-association
reactions and the resulting high specific heat ¢ .
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The maximum temperature variation, if no
condensation occurs, is the sum of the axial-
and the radial temperature drop and ranges
between 28 per cent for the perfect monatomic
gas and 10 per cent for Na at 800°K. If on the
other hand, condensation occurs and a
two-phase equilibrium exists, the mass
fraction p//p of condensate liquid in the
vapour reaches values between 4 and 6 per cent.
The radial temperature drop then is zero and
the maximum temperature variation is equal
to the axial temperature drop —(T' — T,)/T
of 4-6 per cent.

At the viscous limit of heat transfer the tem-
perature drop —(T" — T,)/T, along the liquid-
vapour interface is somewhat higher than at
the sonic limit because of the larger pressure
range of analytical interest. In radial direction
there is in general a temperature increase to-
wards the axis of the heat pipe, i.e. the vapour
is not supersaturated. For the perfect gas this
increase (T — T')/T, is as large as the axial
drop along the interface, ie. the temperature
along the centre stream line of the heat pipe
remains constant.* The physical mechanism
behind this temperature constancy is the same
as in a Joule-Thomson experiment: expansion
energy is transformed by friction into heat,
which keeps the vapour hot. Table 1 shows that
for the alkali metal vapours the temperature
increase (T” — T')/T, towards the axis of the
heat pipe is smaller than the axial drop — (T" —
T,)/T, along the liquid vapour interface, ie.
the temperature along the stream lines decreases.
The reason for this is that with decreasing
pressure a number of diatomic molecules dis-
sociates; as this process for alkali metals is
endothermic, heat is consumed, i.e. the vapour
is cooled down. For Na this effect is so strong
that the radial temperature difference in the
heat pipe becomes roughly zero, i.e. the vapour

* This holds in fact for every stream line in the perfect
gas, since in viscous flow according to (22) and (23b) h is
constant along any stream line; as the enthalpy of a perfect
gas depends on temperature only, this means that also T
is constant along each stream line.
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in the heat pipe axis is just saturated. (Super-
saturation by this dissociation effect is princi-
pally also quite possible.)

Summarizing one may say that the isothermal
dry vapour model holds well when a two-phase
equilibrium exists in the vapour. If there is no
condensation the model is in the inertia flow
regime a good approximation when c, is large,
i.e. when the association-dissociation reactions
play an important role, while the approximation
is relatively poor if the vapour behaves as a
perfect gas. In the viscous flow regime the
situation is just opposite.

The effect of the temperature variations and
of p, on g can easily be estimated. From (2)
and (4a) it follows that in the inertia flow regime
for a given pressure essentially § ~ p*. Similarly
one obtains from (2) and (4b) that in the viscous
flow regime § ~ p. Therefore at a constant
pressure the relative errors ol ¢ and p are
related as follows:

Ap .
= 22 viscous flow
A N o
R .V I
1 3 22 inertia flow.

i
The correct equation of state for the vdpour is

MP

P=btRT

Therefore, for a given pressure,

.|t
ul

lée < |2
p p
Herefrom it follows, taking the values of Table 1,
that in the isothermal dry gas approximation
the maximum relative errors of p for any pressure
in the regions of analytical interest are respec-
tively 28 per cent in the case of inertia flow and
11 per cent in the case of viscous flow. The
resulting relative error Ag/q is therefore at
maximum roughly 14 and 11 per cent, respec-
tively.
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APPENDIX 2
Analysis of compressible laminar vapour flow
in heat pipes

1. Basic equations

Laminar vapour flow is described by the
Navier—Stokes equation (stationary case, no
external forces)

grad P = — p(: gradv? — v x curlv)
4
— n(curlcurlv — 3 grad div v) (33)
and the continuity equation
div (pv) = pdive + v.gradp = 0. (34)

In cylindrical coordinates for axial symmetry
these equations can be written as follows:

oP <5w 6w)
= = —Plug o

_ |10, (o _ow\
" rarr 0z oOr

4 ale v:|

3 e (35a)

0 fou ow 40 |,
+ "[a‘z (a—z “57) t3a o ] 330
10 i,
il il - 36
r o P+ 5 (W) 9
with
10 ow
. _19° ow 7
dive 7o (ru) + 5 (37)

The boundary conditions are

w=u = 0ontheendplanesz = 0andz = |
(38a)

on the liquid—vapour interface r = —
(38b)

If the length of each heat pipe zone (i.e. evapora-
tor, heat shielded zone, condenser) is large
against the diameter, ¥ is in general small
against w and therefore (35) can be simplified,

w=0
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similar as in Prandtl’s boundary layer theory
[12], to*

opP ow ow nao ow
E“”(“_"L 6z>+r6rr8r (392)
JoP
> = (39b)

2. Viscous flow regime

In the viscous flow regime the inertia force
term in (39a) is neglected. Because of (39b) P is
a function of z only, i.e.

dP nd ow
i =rar o o)
Integrating twice over r one finds that
1dP d2 )

By averaging over the cross section it follows
that the axial pressure gradient

@ _

dz &
Herewith one obtains from (41) the profile of
the axial velocity (Fig. 3, curve 1)

W= 2W<1 - %2)

3. Inertiaflow regime
Neglecting the viscous forces in (39a) it
follows that

oP

42)

43)

The radial velocity component u can be
eliminated from this equation by means of the
continuity equation (36). Integrating (36) over
r from O to r and inserting it into (44) gives

* The validity of this approximation can also be verified
a posteriori by inserting into (35) the velocity profiles
calculated from (39).
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4
0P _ 0w [ ae— owl”
oz ocoz)” APy

0

(45)

with

2mr?

{=" (46)

In order to find an approximate solution of
the system of equations (45) and (39b) a method
similar to that of [9] will be used. For this
purpose the average axial pressure drop and
the axial pressure drop in the heat pipe axis are
derived first.

By averaging equation (45) over the cross
section one finds that on the right hand side the
first term after partial integration can be com-
bined with the second term (the integrated part
vanishes because of the boundary condition
(38)). It follows that

47

By integration from z = 0 one finds with the
boundary condition (38) that
P, — P = pw’. (48)
(This equation can also directly be written
down from the momentum balance.) Making
use of the equation of state (1) in order to
express p by P and taking into account the fact
that because of (39b) P is radially constant one
obtains
P Pw?.

—P= (49)

Bl

o]

On the heat pipe axis (¢ = 0) the first term
of the right hand side of (45) vanishes. Eliminat-
ing p by means of (1) it follows that

LOPY' _ _pof,, 0mY
Poz) = P\ déz)°

Integrating this equation from z = 0 and taking
into consideration (39b) it results with the
boundary condition (38) that

(50)
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For incompressible flow p = const. the stable
solution* of the system of equations (45 and
(39b) under the boundary conditions (38) is
given by

T
w= > w(z) cos &. (52)
As one may expect that for compressible flow
the profile of the axial velocity at the beginning
of the heat pipe will be the same as for incom-

pressible flow, the solution of (45) and (39b) is
approximated by¥

W(é, z) = gW(z) [9,(2) + g(z)¢*] cos & (53)

g, can be expressed as a function of g(z) by
averaging (53) over the cross section. Thus one
finds that

W= gW(z)I:l + g(z)(é2 +2- E;)] cos . (54)

The rigid solution of the equation (45) and (39b)
is characterized by the fact that the pressure
P is constant over the cross section. The approxi-
mation problem consists in determining the
function g(z) in (54) in such a way that P becomes
as constant as possible over the cross section.
The procedure is chosen so as to make the
average deviation of P from a constant reference
value equal to zero. As reference value the
pressure in the axis of the heat pipe is chosen.
This means that g is determined in such a way
that P = P". For this purpose the ansatz (54)
is inserted into equations (49) and (51), which

* There are still other solutions, which fulfil the boundary
conditions (38) (w ~ cos [(2n + 1)¢], n = 1,2,...). All these
velocity profiles however are unstable since they have in-
flexion points (see e.g. [12]).

+ One might consider to use a linear ¢-term instead of a
square term. The velocity profile however turns out to be so
flat it can be better approximated by a square-term (a
linear é-term would lead to a pronounced minimum of the
velocity profile in the axis).
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are then resolved for g. Calculating at first from
(54) w? and (w")? one finds that

w? nz‘_ n?
Yo=a=l1-(E -3
w? 8 (3 i

2t T\,
+<%‘T+z>g] (3)

— 1234 — 0:358g + 020642

and

-5 -G

= 2468 — 2307 g + 0-539 g2.

(56)

Inserting this now into (49) and (51), eliminating
w and resolving the resulting quadratic equation
for g, one obtains

x — 0310 — (1:145 x — 0-669)*
g =2 065 G7
with
PO
-1
X = (58)
In P
P

Figure 8 shows a plot of g vs. Py/P calculated
from equations (57) and (58). At the beginning of
the evaporator P,/P = 1 and g = 0. This means,
as expected, that there the velocity profile (49)
is the same as for incompressible flow ((52) and

g
o)
o
l

Velocity profile
correction,

Pressure ratio, £, /P(2)

Fi1G. 8. Variation of the velocity profile correction with
pressure (inertia flow regime).
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curve 2 in Fig. 3). With decreasing P, i.e. along
the evaporator, g becomes larger and the
velocity (54) flatter. At the sonic limit (P,/P =
2-08 (7)) g has a value of 0-47. The corresponding
velocity profile is shown in Fig. 3, curve 3. The
velocity profiles are similar to those derived in
[14].

The relation between A =w?/w* and P/P,
which is required for the analysis of the sonic
limit, is obtained from (55) with (57) and (58).
Figure 4 is-a graphical plot of this relation. The
decrease of A with P reflects again the increasing
flatness of the velocity profile.

APPENDIX 3

Pressure distribution along a heat pipe in the
regime of compressible inertia flow

This appendix contains a discussion of equa-
tion (5), which relates the pressure P with the
average axial heat flux density §:

hedpoP* [_P_ (1 _ £>]

4t [P, \" P, ©)

q=
If the relation between ¢ and the axial coordin-
ate z is known, this equation permits to obtain
the pressure distribution along the heat pipe.
Before entering into the discussion attention
has to be drawn to a limitation of equation (5).
From incompressible vapour flow analysis in
heat pipes [9] it is known that in the inertia
flow regime the vapour, which enters the
cooling zone, is relatively strongly slowed down
near the wall and relatively little near the axis.
As a result, at some distance from the condenser
entrance, the velocity profile gets an inflexion
point and somewhat later there is a region of
reverse flow at the wall. This indicates that
boundary layer separation will occur and that
the vapour flow can no more be described by
laminar analysis [12]. One may suspect that a
similar effect occurs for compressible flow, i.e.
that in the inertia flow regime only a relatively
small part of the cooling zone can be described
by a laminar theory. Thus equation (5), while
it holds well in the heating zone, will probably
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F1G. 9. Variation of pressure with average axial heat flux
density in the inertia flow regime (schematic).

allow only qualitative conclusions in the cooling
Zone.

Figure 9 shows a plot of ¢ vs. P from equation
(5), taking A = 1 (then the sonic limit occurs
at P =05P,). Suppose that the heat pipe
consists only of an evaporator and a condenser
and that the radial heat input and output current

q
A
|
gl _ A
(a) / 3 l 4
i .2
|
) L z
Heating zone| Cooling zone
s i

b
& Subsonic
Sonic

Supersonic

!

!

I
0] .- —r z
F1c. 10. Axial variation of average axial heat flux density
and pressure (schematic).

densities are constant, i.e. that § varies linearly
with z (Fig. 10a). Then the increase of § to a
value 51 below the sonic limit of heat transfer
and its subsequent decrease (curves 1 respec-
tively 2 in Fig. 10a) correspond to a pressure
decrease and increase in Fig. 9 as indicated by
the flashes 1 and 2. The resulting axial pressure
distribution is shown by the curve 1-2 in Fig.
10b. If the heat flux is increased up to the sonic
limit (curve 3 in Fig. 10a), the pressure decreases
as indicated by flash 3 in Fig. 9. For the decrease
of the heat flux (curve 4 in Fig. 10b) there exist
now two possibilities in the pressure diagram
of Fig. 9: either an increase (flash 4a) or a
decrease of pressure (flash 4b). Which path the
system takes depends on the cooling system. It
can easily be seen from (49) that the lower
branch corresponds to supersonic vapour
velocities. Equation (49) shows furthermore
that this branch however cannot be followed
down to P = 0 because of the boundary condi-
tion (38a), which requires that at the end of the
cooling zone P = P,. Therefore somewhere a
compression shock has to occur in which the
pressure jumps from the lower to the upper
branch of Fig. 9. The corresponding axial
pressure distributions are shown as curves 4a
and 4b in Fig. 10b.

Because of the two-phase equilibrium, the
temperature T'is logarithmically linked with the
pressure P(1/T~ In(1/P), see equation (19)
of Appendix 1) and hence the curves of Fig. 10b
give also an idea of the temperature distribution
along the heat pipe. It is therefore interesting
to compare Fig. 10b with experimental tem-
perature distributions.

Figure 11 shows the temperature distributions
along a heat pipe operated vertically in high
vacuum. The heat pipe was 500 mm long. The
lower part of 150 mm length was RF-heated,
the rest was radiation cooled. The heat pipe was
made of a smooth Nb-1Zr tube of 10 mm o.d.
and 8 mm i.d. and a Nb-1Zr grid-type capillary
insert [13] in the heating zone, which formed
with the heat pipe wall 60 grooves of 01 mm
width and 0-5mm depth. The working fluid
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F1G. 11. Temperature distribution along a radiation cooled
Nb-1Zr/Pb heat pipe of 10 mm o.d. and 500 mm length.

was Pb. The temperatures were measured
by optical pyrometry at z = 0,30,80 and 130
mm, from z = 150 mm on at every 25 mm and
towards the end of the cooling zone at every
12:5mm.

It can be noted that curves 3, 4 and 5 in Fig.
11 have a temperature minimum in the cooling
zone. This corresponds to the pressure curve
3-4b in Fig. 10b, ie. left of the temperature
minimum the flow should be supersonic and
right of it subsonic; the minimum itself indicates
the position of the shock front. Figure 11 shows
that with increasing temperature the shock
front moves towards the evaporator. Curve 6,
where the shock front reaches the evaporator
exit, corresponds then to the pressure curve
3-4a in Fig. 10b. For curves 7 and 8 of Fig. 11
the flow is everywhere subsonic, corresponding
to the pressure curve 1-2 in Fig. 10b. The
subsonic flow for curves 7 and 8 is also confirmed
by the fact that from curve 6 to 8 a pronounced
decrease of the temperature drop in the heating
zone occurs, as one would expect from com-
parison of the pressure curves 3 and 1 in Fig. 10b.

Thus equation (5) explains qualitatively a
number of the main features of Fig. 11. It does
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not explain the occurrence (or non-occurrence)
of the temperature drops at the heat pipe ends
shown in Fig, 11, which possibly are due to the
accumulation of working fluid.

Quantitatively, however, there are essential
differences between Fig. 10b and Fig. 11. Most
evident is the fact that in Fig. 11 no complete
pressure recovery occurs and that the shock
front is not very sharp. These differences are
probably mainly due to two effects: First, the
heat pipe was not operated strictly in the inertia
flow regime. An estimation shows that below
roughly 1200°C the viscous forces may no
longer be negligible. Second, in the inertia
flow regime, ie. above roughly 1200°C, the
initially mentioned boundary layer separation
occurs in the cooling zone so that the vapour
flow is no longer completely laminar. This is
also experimentally supported by the fact that
on curve 4 of Fig. 11 at the position marked by
a circle rapid temperature fluctuations were
observed (they were found nowhere else). Finally
it must be noted that the heat conduction in the
heat pipe wall (Nb-1Zr is a rather good heat
conductor) will also smooth out the wall
temperature variation in the region of the shock
front.
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THEORIE DE LA LIMITE ULTIME DE TRANSFERT THERMIQUE POUR DES
CALODUCS CYLINDRIQUES

Résumé—Le flux thermique axial dans des caloducs est en principe limité pour deux raisons: 'insuffisance
de I"écoulement de retour du condensat et les limitations de 1’écoulement de vapeur. Si 1’écoulement
liquide de retour est garanti par une meéche convenable, le flux thermique axial est limité par les seuls
effets de I’écoulement de vapeur. Pour cette limite ultime du transfert thermique, on a pu distinguer
plusiers régimes d’écoulement de vapeur dépendant de la grandeur relative des forces d’inertie et de
viscosité dans la vapeur.

On présente pour les deux cas limites de la prédominance soit des forces d’inertie soit des forces de
viscosité (régime d’écoulement inertiel ou visqueux), une analyse de la limite ultime du transfert thermique
dans des caloducs cylindriques en considérant a la fois les variations axiales et radiales de la vitesse de la
vapeur. La variation radiale de la composante axiale de la vitesse est décisive dans le régime d’écoulement
visqueux tandis que dans le régime d’écoulement inertiel son influence est réduite & une diminution de
S pour cent pour la limite ultime du transfert thermique. La vapeur est décrite comme un gaz parfait
isotherme. Ce mod¢le présente dans les domaines de pression intéressants une approximation convenable
de la réalité (erreur sur les limites du transfert thermique de ’ordre de 10 pour cent) et il repose sur une
analyse particuliérement simple. Dans le régime d’écoulement inertiel, le flux thermique est limité par le
phénomeéne de choc (limite de transfert thermique sonique), tandis que dans le régime d’écoulement
visqueux la limitation du flux thermique résulte du fait que la pression de vapeur ne peut étre inférieure a
zéro (limite de transfert thermique visqueux). On obtient des formules approchées pour ces deux limites de
transfert thermique. L'analyse montre que pour chaque caloduc, au dessous d’une certaine température,
la limite ultime du transfert thermique est du type visqueux. Cette limite peut €tre trés inférieure a la limite

sonique. Un bon accord existe entre les résultats théoriques et expérimentaux.

DIE THEORIE DER ENDGULTIGEN W_ARMEUBERTRAGUNGSGRENZE
ZYLINDRISCHER WARMEROHRE

Zusammenfassung - Der axiale Wirmestrom in Wirmerohren wird im Prinzip aus zwei Ursachen begrenzt :
unzurcichender Riickfluss des Kondensats und Dampfstrémungsbegrenzungen. Falls der Flissigkeits-
riickstrom durch eine geeignete Dochtgestaltung garantiert ist, wird der axiale Warmestrom nur noch durch
Dampfstromungseffekte begrenzt. Fir diese endgiiltige Grenze der Wirmeiibertragung kann man
verschiedene Stromungsbereiche unterscheiden, abhingend von der relativen Grosse der Tragheits- und
Zahigkeitskrifte im Dampf.

Eine Analyse der endgiiltigen Grenze der Wirmeiibertragung zylindrischer Wiarmerohre mit laminarer
Dampfstrémung wird fiir die zwei begrenzenden Falle, entweder Uberwiegend Trigheits- oder Zahigkeits-
krifte (Trigheits- oder ziher Strémungsbereich) vorgelegt. unter Beriicksichtigung sowohl der axialen
als auch der radialen Anderung der Dampfgeschwindigkeit. Die radiale Anderung der Axialgeschwindigkeit
ist entscheidend im viskosen Stromungsbereich, wihrend sich im Trégheits-Stromungsbereich ihr Einfluss
als begrenzt erweist mit einer Verminderung der endgiiltigen Grenze der Wéarmeiibertragung um S Prozent.
Der Dampfwird alsisothermes, ideales Gas angesehen. Dieses Modell gibt in dem analytisch interessierenden
Druckbereich eine recht gute Naherung zur Wirklichkeit (Fehler in den Wiarmeiibertragungsgrenzen von
ungefahr 10 Prozent) und liefert Ergebnisse durch eine besonders einfache Analyse. Im Trigheits-
Stromungsbereich wird der Wirmestrom durch das Drossel-Phdnomen begrenzt (Schallstromungs-
Wirmeiibertragungsgrenze), wihrend im viskosen Stromungsbereich die Wiarmestrombegrenzung daher
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rithrt, dass der Dampfdruck nicht kleiner als Null sein kann (viskose Wirmeiibertragungsgrenze). Die
Niherungsformeln wurden fiir diese zwei Wirmeiibertragungsgrenzen abgeleitet. Die Untersuchung zeigt,
dass fiir jedes Warmerohr unterhalb einer bestimmten Temperatur die grundlegende Grenze der
Wirmelibertragung vom viskosen Typ ist. Diese Grenze kann weit unterhalb der Schallgrenze liegen.
Zwischen der Theorie und den experimentellen Ergebnissen wurde eine gute Ubereinstimmung gefunden.

TEOPUA NPEJEJA BO3MOKHOCTEN TEIJIONIEPEHOCA B
IMWINHIPUYECKUX TEIIJIOBBIX TPYBKAX

AnHoTanma—M Me0TCA [Ba NPMHNUMNMANLHBIX OTPAHUUYEHUA IIEPEHOCA Tella B OCeBOM
HANpaBJICHUM TEIJOBEIX TPYOOK : HEMOCTATOYHHIH BO3BpPAT KOHJEHCATA M OIPAHHYEHHA IO
OOTOKY mnapa. Eciou BO3BpaT MUIKOCTM [OCTMIaeTCH COOTBETCTBYOLIEH KOHCTpYKuuel
QUTHIIA, TO TENJIONEPEHOC B KOHEYHOM CYeTe OrpaHM4MBAETCA TOJNLKO BO3JEHCTBMEM IIOTOKA
napa. I1oaToMy npemes BO3MOMHOCTell TelJIONePEHOCA MPU Pa3HBIX PEKUMAX TEUEHUA napa
MOMeT ObITh PasIMYHBIM B 3aBHCUMOCTH OT OTHOCHTEJbHOIl BEJMYMHBI CHJI MHEPHUU HIM
BABKOCTH B NOTOKe.

BuimosHeH aHaans3 npefmesa BO3MOMHOCTEH repefavn Tenaa B NUJIMHAPMYECKHX TENJIOBHIX
Tpy6Kax NMpH JaMHHADHOM TeYeHUM Napa AJIA ABYX IpelelbHHX ClIyyaeB (MHEPUMOHHOIO M
BABKOI'O TeYeHMIl) C y4eTOM KaK OceBOl, TAK U PafuajbHON COCTABIAWIIMX CKOPOCTH Mapa.
UsmeHenune oceBoil CKOpPOCTH IO pajuyCy ABIAETCHA ONpPENeIAIOMMM IPH BA3KOM TeUeHMH,
TOTAA KaK NpM MHEDUUMOHHOM TEYeHHH €€ BIMAHME CKA3BIBAeTCA B yMeHbINEHMHM Ha 5Y,
BO3MOKHOCTelt Tensomepenoca. Ilap paccMaTrpuBaeTCA Kak UBOTEPMUUECKUIE MEAJBHBINA ras.
Takaa Momesib NIpOCTA U MMEET XOPOILEe COOTBETCTBUE C pealIbHBIM NIPOLIECCOM I HHTepBaja
JaBieHUil, NPeACTABIAKIINX TeOPETHYECKHI MHTepeC (MOrpelIHOCTb Hpejesa BO3MOHHOCTEH
cocraBaAer okoino 109,). Ilpm HHepHMOHOM TEUYeHHM TEIJIOBOM MOTOK OrPAHNYMBAETCA
BCIICJICTBHE YAAPHHX ABJEeHURt (3BYyKOBO# mpeflen), B TO BpeMs KaK NMpU BASKOM TYEHMH
OTrpaHMYEeHHUA TEIJIOBOr0 IOTOKA O0YCJOBJEHBI TeM, YTO [laBjleHMe Napa He MOweT ORITh
MeHbIlle HylA (BAskuit npeper;). IlodyveHB! aNmpOKCUMHUpYIOLIME 33aBUCHMOCTH AJA BTHX
ABYX TpefleIbHBIX CIy4YaeB TeljooGMeHa. AHAIM3 NMOKA3BIBAET, YTO JJIA KaKION TemIoBOM
TpyOkKM HEUe HEKOTOPOH TeMIIepaTypHl KOHEYHHIE Hpefes BO3MOMKHOCTEeR Tena006MeHA
OMpenesAeT npefel, KOTOPhil MOeT ObiTh HAMHOTO HUE 3BYKOBOro. OGHapyKeHo Xopollee

COOTBETCTBUE MEMHKIY TEOPETHMYECKNMM K DKCIIEPUMEHTAJNbHBIMU JAHHLIMK.



